cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A247491 Number of crossing partitions of {1,2,...,n} that contain no singletons.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 26, 126, 624, 3193, 17119, 96668, 576104, 3621982, 23980620, 166805068, 1215842905, 9263445775, 73599067250, 608471202527, 5224252803246, 46499854580107, 428369819029085, 4078345518655015, 40073659206668916, 405885206895408576, 4232705116291188276
Offset: 0

Views

Author

Peter Luschny, Sep 25 2014

Keywords

Comments

A partition p of the set {1,2,...,n} whose elements are arranged in their natural order, is crossing if there exist four numbers 1 <= i < k < j < l <= n such that i and j are in the same block, k and l are in the same block, but i,j and k,l belong to two different blocks.
Also the number of crossing partitions of {1,2,...,n} that contain no cyclical adjacencies. e.g., a(5) = 5, [13|24|5, 13|25|4, 14|25|3, 14|2|35, 1|24|35]. - Yuchun Ji, Nov 13 2020

Examples

			The crossing partitions of {1,2,3,4,5} that contain no singletons are: [13|245], [14|235], [24,135], [25|134], [35|124].
		

Crossrefs

Programs

  • Maple
    A247491 := n -> (-1)^n-add((-1)^(n-k)*combinat:-bell(k), k = 0..n-1) - (-1)^n*hypergeom([-n, 1/2], [2], 4); seq(round(evalf(A247491(n), 100)), n=0..27);
  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*(BellB[k]-CatalanNumber[k]), {k,0,n}], {n, 0, 26}] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    B(n) = sum(k=0, n, stirling(n,k,2));
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(B(k)-binomial(2*k,k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
  • Sage
    A247491 = lambda n: sum((-1)^(n-k)*binomial(n,k)*(bell_number(k) - catalan_number(k)) for k in (0..n))
    [A247491(n) for n in range(27)]
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(Bell(k)-Catalan(k)).
a(n) = A000296(n) - A005043(n).
a(n) = A016098(n) - A247494(n); i.e., remove the partitions with cyclical adjacencies from the crossing partitions. - Yuchun Ji, Nov 17 2020

A247494 Number of crossing partitions of {1,2,...,n} that contain singletons.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 45, 322, 2086, 13092, 82060, 523116, 3429481, 23279555, 164244262, 1206458632, 9228941572, 73471779239, 608000100209, 5222503739340, 46493341311706, 428345495309624, 4078254436854598, 40073317276815681, 405883920183989049, 4232700263388189325
Offset: 0

Views

Author

Peter Luschny, Oct 02 2014

Keywords

Comments

A partition p of the set {1,2,...,n} whose elements are arranged in their natural order, is crossing if there exist four numbers 1 <= i < k < j < l <= n such that i and j are in the same block, k and l are in the same block, but i,j and k,l belong to two different blocks.
Also number of crossing partitions of {1,2,...,n} that contain cyclical adjacencies. a(5) = 5, [124|35, 134|25, 135|24, 13|245, 14|235]. - Yuchun Ji, Nov 13 2020

Examples

			The crossing partitions of {1,2,3,4,5} that contain singletons are: [1|24|35], [2|14|35], [3|14|25], [4|13|25], [5|13|24].
		

Crossrefs

Programs

  • Maple
    A247494 := n -> add((-1)^(n-k+1)*combinat:-bell(k+1), k=0..n-1) + (-1)^n*hypergeom([-n,1/2],[2],4) - binomial(2*n,n)/(n+1):
    seq(round(evalf(A247494(n),100)), n=0..25);
  • Mathematica
    Table[Sum[(-1)^(n-k+1)*Binomial[n,k]*(BellB[k]-CatalanNumber[k]),{k,0,n-1}],{n,0,25}] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    B(n) = sum(k=0, n, stirling(n,k,2));
    a(n) = sum(k=0, n-1, (-1)^(n-k+1)*binomial(n,k)*(B(k) - binomial(2*k,k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
  • Sage
    A247494 = lambda n: sum((-1)^(n-k+1)*binomial(n,k)*(bell_number(k)-catalan_number(k)) for k in (0..n-1))
    [A247494(n) for n in range(26)]
    

Formula

a(n) = Sum_{k = 0..n-1} (-1)^(n-k+1)*binomial(n,k)*(Bell(k)-Catalan(k)).
a(n) = A016098(n) - A247491(n).
a(n) = A000296(n+1) - A106640(n-1), for n>0 (i.e., remove the non-crossing partitions from the cyclical adjacencies partitions). - Yuchun Ji, Nov 11 2020

A306437 Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2019

Keywords

Examples

			Triangle begins:
  1
  1   1
  1   0   1
  1   2   0   1
  1   0   0   0   1
  1   5   3   0   0   1
  1   0   0   0   0   0   1
  1  14   0   4   0   0   0   1
  1   0  12   0   0   0   0   0   1
  1  42   0   0   5   0   0   0   0   1
  1   0   0   0   0   0   0   0   0   0   1
  1 132  55  22   0   6   0   0   0   0   0   1
Row 6 counts the following non-crossing set partitions (empty columns not shown):
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{36}{45}}  {{126}{345}}
                        {{14}{23}{56}}  {{156}{234}}
                        {{16}{23}{45}}
                        {{16}{25}{34}}
		

Crossrefs

Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764.

Programs

  • Maple
    T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, Feb 16 2019
  • Mathematica
    Table[Table[If[Divisible[n,d],d/n*Binomial[n,n/d-1],0],{d,n}],{n,15}]

Formula

If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].

A189232 Triangle read by rows: Number of crossing set partitions of {1,2,...,n} into k blocks.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 5, 0, 0, 0, 16, 40, 15, 0, 0, 0, 42, 196, 175, 35, 0, 0, 0, 99, 770, 1211, 560, 70, 0, 0, 0, 219, 2689, 6594, 5187, 1470, 126, 0, 0, 0, 466, 8790, 31585, 37233, 17535, 3360, 210, 0, 0
Offset: 1

Views

Author

Peter Luschny, Apr 28 2011

Keywords

Examples

			There are 10 crossing set partitions of {1,2,3,4,5}.
T(5,2) = card{13|245, 14|235, 24|135, 25|134, 35|124} = 5.
T(5,3) = card{1|35|24, 2|14|35, 3|14|25, 4|13|25, 5|13|24} = 5.
[1] 0
[2] 0, 0
[3] 0, 0, 0
[4] 0, 1, 0, 0
[5] 0, 5, 5, 0, 0
[6] 0, 16, 40, 15, 0, 0
[7] 0, 42, 196, 175, 35, 0, 0
[8] 0, 99, 770, 1211, 560, 70, 0, 0
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999 (Exericses 6.19)

Crossrefs

Row sums A016098, A001263.

Programs

  • Maple
    A189232 := (n,k) -> combinat[stirling2](n,k) - binomial(n,k-1)*binomial(n,k)/n:
    for n from 1 to 9 do seq(A189232(n,k), k = 1..n) od;
  • Mathematica
    T[n_, k_] := StirlingS2[n, k] - Binomial[n, k-1] Binomial[n, k]/n;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 24 2019 *)

Formula

T(n,k) = S2(n,k) - C(n,k-1)*C(n,k)/n; S2(n,k) Stirling numbers of the second kind, C(n,k) binomial coefficients.

A326289 a(0) = 0, a(n) = 2^binomial(n,2) - 2^(n - 1).

Original entry on oeis.org

0, 0, 0, 4, 56, 1008, 32736, 2097088, 268435328, 68719476480, 35184372088320, 36028797018962944, 73786976294838204416, 302231454903657293672448, 2475880078570760549798240256, 40564819207303340847894502555648, 1329227995784915872903807060280311808
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Number of simple graphs with vertices {1..n} containing two edges {a,b}, {c,d} that are weakly crossing, meaning a <= c < b <= d or c <= a < d <= b.

Examples

			The a(4) = 56 weakly crossing edge-sets:
  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {12,34}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {13,14}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
  {13,23}  {12,14,34}  {12,14,23,24}
  {13,24}  {12,23,24}  {12,14,23,34}
  {13,34}  {12,23,34}  {12,14,24,34}
  {14,24}  {12,24,34}  {12,23,24,34}
  {14,34}  {13,14,23}  {13,14,23,24}
  {23,24}  {13,14,24}  {13,14,23,34}
  {23,34}  {13,14,34}  {13,14,24,34}
  {24,34}  {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
           {23,24,34}
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,0,2^Binomial[n,2]-2^(n-1)],{n,0,5}]

A326291 Number of unsortable factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2019

Keywords

Comments

A factorization into factors > 1 is unsortable if there is no permutation (c_1,...,c_k) of the factors such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 10 unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
Missing from this list are:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
		

Crossrefs

Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]

A324325 Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,4},{2,3}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{1,2},{4}}
  {{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324326(n) = A318284(n).

A326277 Number of crossing normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y.

Examples

			The a(5) = 22 crossing normal multiset partitions:
  {{1,3},{1,2,4}}  {{1},{1,3},{2,4}}
  {{1,3},{2,2,4}}  {{1},{2,4},{3,5}}
  {{1,3},{2,3,4}}  {{2},{1,3},{2,4}}
  {{1,3},{2,4,4}}  {{2},{1,4},{3,5}}
  {{1,3},{2,4,5}}  {{3},{1,3},{2,4}}
  {{1,4},{2,3,5}}  {{3},{1,4},{2,5}}
  {{2,4},{1,1,3}}  {{4},{1,3},{2,4}}
  {{2,4},{1,2,3}}  {{4},{1,3},{2,5}}
  {{2,4},{1,3,3}}  {{5},{1,3},{2,4}}
  {{2,4},{1,3,4}}
  {{2,4},{1,3,5}}
  {{2,5},{1,3,4}}
  {{3,5},{1,2,4}}
		

Crossrefs

Crossing simple graphs are A326210.
Normal multiset partitions are A255906.
Non-crossing normal multiset partitions are A324171.
MM-numbers of crossing multiset partitions are A324170.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A127745 Counts Bell numbers (except for Catalans) associated with the partition number [n].

Original entry on oeis.org

0, 0, 0, 1, 8, 50, 294, 1717, 10194, 62284, 394346, 2597266, 17827166, 127575414, 951411752, 7386583917, 59623674472, 499648882838, 4340548090590, 39033489125836, 362871600781796, 3482858492844510, 34471940635650958, 351444263328831458
Offset: 1

Views

Author

Alford Arnold, Feb 25 2007

Keywords

Comments

A074664 counts the Bell Numbers associated with the partition number [n]. A000108 counts the corresponding Catalan numbers and here we count the remaining Bell numbers associated with the partition number [n].

Examples

			There are 15 Bell objects when n = 4, 14 are also Catalans so a(4) = 1.
There are 52 Bell objects when n = 5, 42 are also Catalans; we know that 5 = 4+1 = 1+4 which accounts for two of the non-Catalan Bells so, a(5) = 52 - 42 - 2 = 8.
		

Crossrefs

Formula

a(n) = A074664(n) - A000108(n-1)

A179315 Nonzero differences A179313(n,k)- A127742(n,k) read along rows.

Original entry on oeis.org

1, 8, 2, 50, 16, 2, 3, 294, 100, 16, 4, 24, 6, 4, 1717, 588, 100, 32, 11, 150, 48, 12, 3, 32, 12, 5, 10194, 3434, 588, 200, 124, 882, 300
Offset: 4

Views

Author

Alford Arnold, Jul 12 2010

Keywords

Comments

Refinement of the nonzero entries of A016098.

Examples

			A179313 .begins 1; 1 1; 2 2 1; 6 4 1 3 1; 22 12 4 6 3 4 1; 92 44 12 18
A127742 .begins 1; 1 1; 2 2 1; 5 4 1 3 1; 14 10 4 6 3 4 1; 42 28 10 15
so
This seq begins................1...........8..2............50 16 02 03
		

Crossrefs

Extensions

Edited and extended by R. J. Mathar, Jul 16 2010
Previous Showing 41-50 of 54 results. Next