cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 59 results. Next

A218740 a(n) = (37^n - 1)/36.

Original entry on oeis.org

0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 37 (A009981).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 37*x)).
a(n) = 38*a(n-1) - 37*a(n-2).
a(n) = floor(37^n/36). (End)
E.g.f.: exp(x)*(exp(36*x) - 1)/36. - Stefano Spezia, Mar 28 2023

A218744 a(n) = (41^n - 1)/40.

Original entry on oeis.org

0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 41 (A009985).

Crossrefs

Programs

Formula

a(n) = floor(41^n/40).
G.f.: x/((1-x)*(1-41*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 42*a(n-1) - 41*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(21*x)*sinh(20*x)/20. - Elmo R. Oliveira, Aug 27 2024

A218746 a(n) = (43^n - 1)/42.

Original entry on oeis.org

0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 43 (A009987).
0 followed by the binomial transform of A170762. - R. J. Mathar, Jul 18 2015

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-43*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 44*a(n-1) - 43*a(n-2). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(43^n/42). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(22*x)*sinh(21*x)/21. - Elmo R. Oliveira, Aug 27 2024

A240840 Floor(6^n/(1+1/(2*cos(5*Pi/11)))^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 17, 22, 30, 40, 53, 71, 95, 126, 168, 223, 297, 395, 525, 698, 928, 1234, 1640, 2180, 2899, 3854, 5123, 6811, 9055, 12038, 16003, 21275, 28282, 37599, 49984, 66448, 88336, 117433, 156115
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 13 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a hendecaflake after n iterations, let a(0) = 1. The total number of sides is 11*A000400(n). The total number of holes is A016123(n), n >=1. 1/(2*cos(5*Pi/11)) = A231186.

Crossrefs

Cf. A000400, A016123, A231186, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake), A240841 (tridecaflake).

Programs

  • Maple
    A240840:=n->floor(6^n/(1+1/(2*cos(5*Pi/11)))^n); seq(A240840(n), n=0..50); # Wesley Ivan Hurt, Apr 13 2014
  • Mathematica
    Table[Floor[6^n/(1 + 1/(2*Cos[5*Pi/11]))^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 13 2014 *)
  • PARI
    {a(n)=floor(6^n/(1+1/(2*cos(5*Pi/11)))^n)}
           for (n=0, 100, print1(a(n), ", "))

A218728 a(n) = (25^n - 1)/24.

Original entry on oeis.org

0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 25 (A009969); q-integers for q=25.
Partial sums are in A014914. Also, the sequence is related to A014943 by A014943(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. - Bruno Berselli, Nov 07 2012

Crossrefs

Programs

Formula

a(n) = floor(25^n/24).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-25*x)).
a(n) = 26*a(n-1) - 25*a(n-2). (End)
E.g.f.: exp(13*x)*sinh(12*x)/12. - Elmo R. Oliveira, Aug 27 2024
a(n) = 25*a(n-1) + 1. - Jerzy R Borysowicz, Sep 05 2025

A218743 a(n) = (40^n - 1)/39.

Original entry on oeis.org

0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 40 (A009983).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
  • Mathematica
    LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=40^n\39
    

Formula

a(n) = floor(40^n/39).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-40*x)).
a(n) = 41*a(n-1) - 40*a(n-2). (End)
E.g.f.: exp(x)*(exp(39*x) - 1)/39. - Elmo R. Oliveira, Aug 29 2024

A269025 a(n) = Sum_{k = 0..n} 60^k.

Original entry on oeis.org

1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

Partial sums of powers of 60 (A159991).
Converges in a 10-adic sense to ...762711864406779661.
More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

Crossrefs

Cf. A159991.
Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469 (k=32), A218736-A218753 (k=33..50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

Programs

  • Mathematica
    Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
    Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
    LinearRecurrence[{61, -60}, {1, 61}, 15]
  • PARI
    a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 1/((1 - 60*x)*(1 - x)).
a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).
a(n+1) = 60*a(n) + 1, a(0)=1.
a(n) = Sum_{k = 0..n} A159991(k).
Sum_{n>=0} 1/a(n) = 1.016671221665660580331...
E.g.f.: exp(x)*(60*exp(59*x) - 1)/59. - Stefano Spezia, Mar 23 2023

A218725 a(n) = (22^n - 1)/21.

Original entry on oeis.org

0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 22; q-integers for q=22: Diagonal k=1 in the triangle A022186.
Partial sums are in A014907. Also, the sequence is related to A014940 by A014940(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 06 2012]

Crossrefs

Programs

Formula

a(n) = floor(22^n/21).
G.f.: x/((1-x)*(1-22*x)). [Bruno Berselli, Nov 06 2012]
a(n) = 23*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(21*x) - 1)/21. - Elmo R. Oliveira, Aug 29 2024

A218737 a(n) = (34^n - 1)/33.

Original entry on oeis.org

0, 1, 35, 1191, 40495, 1376831, 46812255, 1591616671, 54114966815, 1839908871711, 62556901638175, 2126934655697951, 72315778293730335, 2458736461986831391, 83597039707552267295, 2842299350056777088031, 96638177901930420993055, 3285698048665634313763871
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 34 (A009978).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 34*x)).
a(n) = 35*a(n-1) - 34*a(n-2).
a(n) = floor(34^n/33). (End)
E.g.f.: exp(x)*(exp(33*x) - 1)/33. - Stefano Spezia, Mar 26 2023

A218738 a(n) = (35^n - 1)/34.

Original entry on oeis.org

0, 1, 36, 1261, 44136, 1544761, 54066636, 1892332261, 66231629136, 2318107019761, 81133745691636, 2839681099207261, 99388838472254136, 3478609346528894761, 121751327128511316636, 4261296449497896082261, 149145375732426362879136, 5220088150634922700769761
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 35 (A009979).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 35*x)).
a(n) = 36*a(n-1) - 35*a(n-2).
a(n) = floor(35^n/34). (End)
E.g.f.: exp(x)*(exp(34*x) - 1)/34. - Stefano Spezia, Mar 28 2023
Previous Showing 31-40 of 59 results. Next