A187468
Sum of the squares modulo 2^n of the odd numbers less than 2^n.
Original entry on oeis.org
1, 2, 4, 40, 208, 928, 3904, 16000, 64768, 260608, 1045504, 4188160, 16764928, 67084288, 268386304, 1073643520, 4294770688, 17179475968, 68718690304, 274876334080, 1099508482048, 4398040219648, 17592173461504, 70368719011840, 281474926379008
Offset: 1
For n=5, 2^5=32. The c_j, numbers prime to 32 are the odd numbers less than 32. The r_j = (c_j)^2 mod 32 are 1,9,25,17,17,25,9,1,1,9,25,17,17,25,9,1 = 4*52 = 208.
From the formula, for n=5, 2^(5-1) * (2^(5-1) - 3) = 16*13 = 208.
-
[n le 2 select n else 2^(n-2)*(2^n - 6): n in [1..40]]; // G. C. Greubel, Dec 26 2024
-
Join[{1, 2}, Table[2^(n - 1) (2^(n - 1) - 3), {n, 3, 20}]]
LinearRecurrence[{6,-8}, {1,2,4,40}, 40] (* G. C. Greubel, Dec 26 2024 *)
-
def A187468(n): return pow(2,n-2)*(pow(2,n) -6) +3*int(n==1) +4*int(n==2)
print([A187468(n) for n in range(1,41)]) # G. C. Greubel, Dec 26 2024
A083333
a(n) = 10*a(n-2) - 16*a(n-4) for n>=4, with a(0)=a(1)=1, a(2)=6, a(3)=10.
Original entry on oeis.org
1, 1, 6, 10, 44, 84, 344, 680, 2736, 5456, 21856, 43680, 174784, 349504, 1398144, 2796160, 11184896, 22369536, 89478656, 178956800, 715828224, 1431655424, 5726623744, 11453245440, 45812985856, 91625967616, 366503878656
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
-
I:=[1,1,6,10]; [n le 4 select I[n] else 10*Self(n-2) -16*Self(n-4): n in [1..41]]; // G. C. Greubel, Dec 27 2024
-
CoefficientList[Series[(1+x-4x^2)/(1-10x^2+16x^4), {x, 0, 30}], x]
LinearRecurrence[{0,10,0,-16},{1,1,6,10},30] (* Harvey P. Dale, Aug 04 2024 *)
-
def A083333(n): return 2^((n-1)/2)*( (n%2)*(2^(n+1) -1) + ((n+1)%2)*sqrt(2)*(2^(n+1) +1))/3
print([A083333(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
A092055
a(n) = binomial(2 + 2^n,3).
Original entry on oeis.org
1, 4, 20, 120, 816, 5984, 45760, 357760, 2829056, 22500864, 179481600, 1433753600, 11461636096, 91659526144, 733141975040, 5864598896640, 46914643623936, 375308558925824, 3002434111406080, 24019335451770880, 192154133857304576, 1537230871833083904, 12297838178567454720
Offset: 0
a(5) = C(2+2^5,3) = C(34,3) = 5984.
-
[Binomial(2^n+2, 3): n in [0..30]]; // G. C. Greubel, Dec 27 2024
-
seq(binomial(2+2^n, 3), n=0..25); # Zerinvary Lajos, Feb 22 2008
-
nn=20;Table[Coefficient[Series[1/(1-x)^(2^n),{x,0,nn}],x^3],{n,0,nn}] (* Geoffrey Critzer, Jul 10 2013 *)
Binomial[2+2^Range[0,30], 3] (* G. C. Greubel, Dec 27 2024 *)
-
Vec((1-10*x+20*x^2)/((1-2*x)*(1-4*x)*(1-8*x)) + O(x^100)) \\ Colin Barker, Sep 13 2014
-
def A092055(n): return binomial(pow(2,n)+2,3)
print([A092055(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
A025992
Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)).
Original entry on oeis.org
1, 22, 313, 3666, 38493, 377286, 3529681, 31947322, 282198565, 2447183310, 20920905369, 176852694018, 1481626607917, 12322682753494, 101879323774177, 838170485025354, 6867569457133749, 56077266261254238
Offset: 0
Cf.
A000079,
A000351,
A000420,
A001018,
A016127,
A016130,
A016131,
A016161,
A016162,
A016177,
A016296,
A016297,
A016311,
A019928.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)))); // Bruno Berselli, May 09 2013
-
CoefficientList[Series[1/((1-2x)(1-5x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {22,-171,542,-560},{1,22,313,3666},30] (* Harvey P. Dale, Jan 29 2013 *)
-
a(n) = n+=3; (5*8^n-9*7^n+5*5^n-2^n)/90 \\ Charles R Greathouse IV, Oct 03 2016
-
def A025992(n): return (5*pow(8,n+3)-9*pow(7,n+3)+pow(5,n+4)-pow(2,n+3))//90
print([A025992(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
A096041
Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^7-M)/6, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.
Original entry on oeis.org
1, 8, 2, 57, 24, 3, 400, 228, 48, 4, 2801, 2000, 570, 80, 5, 19608, 16806, 6000, 1140, 120, 6, 137257, 137256, 58821, 14000, 1995, 168, 7, 960800, 1098056, 549024, 156856, 28000, 3192, 224, 8, 6725601, 8647200, 4941252, 1647072, 352926, 50400
Offset: 1
Triangle begins:
1
8 2
57 24 3
400 228 48 4
2801 2000 570 80 5
19608 16806 6000 1140 120 6
-
P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^7-M)/6 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
-
P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 7] - M)/6]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
A340554
T(n, k) = [x^k] hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x). Triangle read by rows, T(n, k) for n >= 0.
Original entry on oeis.org
1, 1, 1, 3, 1, 10, 5, 1, 36, 126, 84, 9, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 528, 40920, 1107568, 13884156, 92561040, 354817320, 818809200, 1166803110, 1037158320, 573166440, 193536720, 38567100, 4272048, 237336, 5456, 33
Offset: 0
Triangle starts:
[0] 1, 1
[1] 1, 3
[2] 1, 10, 5
[3] 1, 36, 126, 84, 9
[4] 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17
-
p:= func< n | n eq 0 select 1 else 2^(n-1) >;
T:= func< n,k | Factorial(2^n+1)/(Factorial(2*k)*Factorial(2^n-2*k+1)) >;
[T(n,k): k in [0..p(n)], n in [0..8]]; // G. C. Greubel, Dec 30 2024
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
Tpoly := proc(n) simplify(hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x)):
CoeffList(%) end: seq(Tpoly(n), n = 0..5);
-
Tpoly[n_] := HypergeometricPFQ[{-2^n/2, -2^n/2 - 1/2}, {1/2}, x];
Table[CoefficientList[Tpoly[n], x], {n, 0, 5}] // Flatten
-
# from sage.all import * # (use for Python)
def p(n): return 1 if n==0 else pow(2,n-1)
def T(n,k): return rising_factorial(-pow(2,n)-1, 2*k)/factorial(2*k)
print(flatten([[T(n,k) for k in range(p(n)+1)] for n in range(8)])) # G. C. Greubel, Dec 30 2024
Comments