A191468
a(n) = 8^n - 5^n.
Original entry on oeis.org
0, 3, 39, 387, 3471, 29643, 246519, 2019027, 16386591, 132264603, 1063976199, 8541106467, 68475336111, 548535110763, 4391942995479, 35153854510707, 281322388820031, 2251036874232123, 18010583812216359, 144096114589527747, 1152826137175206351, 9222895199696572683
Offset: 0
-
[8^n - 5^n: n in [0..20]];
-
Table[8^n-5^n,{n,0,20}] (* or *) LinearRecurrence[{13,-40},{0,3},30] (* Harvey P. Dale, Dec 04 2012 *)
CoefficientList[Series[3 x/((1 - 5 x) (1 - 8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
-
a(n)=8^n-5^n \\ Charles R Greathouse IV, Jun 08 2011
A025992
Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)).
Original entry on oeis.org
1, 22, 313, 3666, 38493, 377286, 3529681, 31947322, 282198565, 2447183310, 20920905369, 176852694018, 1481626607917, 12322682753494, 101879323774177, 838170485025354, 6867569457133749, 56077266261254238
Offset: 0
Cf.
A000079,
A000351,
A000420,
A001018,
A016127,
A016130,
A016131,
A016161,
A016162,
A016177,
A016296,
A016297,
A016311,
A019928.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)))); // Bruno Berselli, May 09 2013
-
CoefficientList[Series[1/((1-2x)(1-5x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {22,-171,542,-560},{1,22,313,3666},30] (* Harvey P. Dale, Jan 29 2013 *)
-
a(n) = n+=3; (5*8^n-9*7^n+5*5^n-2^n)/90 \\ Charles R Greathouse IV, Oct 03 2016
-
def A025992(n): return (5*pow(8,n+3)-9*pow(7,n+3)+pow(5,n+4)-pow(2,n+3))//90
print([A025992(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
A248341
a(n) = 10^n - 7^n.
Original entry on oeis.org
0, 3, 51, 657, 7599, 83193, 882351, 9176457, 94235199, 959646393, 9717524751, 98022673257, 986158712799, 9903110989593, 99321776927151, 995252438490057, 9966767069430399, 99767369486012793, 998371586402089551, 9988601104814626857
Offset: 0
-
[10^n-7^n: n in [0..30]];
-
Table[10^n - 7^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x/((1 - 7 x) (1 - 10 x)), {x, 0, 30}], x]
LinearRecurrence[{17,-70},{0,3},20] (* Harvey P. Dale, Dec 18 2020 *)
A061252
a(n) = 16^n - 15^n.
Original entry on oeis.org
0, 1, 31, 721, 14911, 289201, 5386591, 97576081, 1732076671, 30276117361, 522861237151, 8942430185041, 151728638820031, 2557404559011121, 42864668012537311, 715027614225987601, 11878335717996660991
Offset: 0
-
Table[16^n-15^n,{n,0,20}] (* or *) LinearRecurrence[{31,-240},{0,1},20] (* Harvey P. Dale, Jan 23 2021 *)
-
a(n) = 16^n - 15^n; \\ Michel Marcus, Aug 26 2013
A147670
Primes of the form 8^k-7^k.
Original entry on oeis.org
1273609, 6612607849, 2019169299698041, 151522599154859354635552921, 9745744932248196392577951049, 220850092209355591999793321040563526382178219220559368038951319096656329
Offset: 1
8^7-7^7 = 2097152-823543 = 1273609.
-
lst={};Do[p=8^n-7^n;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst
Select[Table[8^n-7^n,{n,100}],PrimeQ] (* Harvey P. Dale, Jul 05 2023 *)
Comments