cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A191468 a(n) = 8^n - 5^n.

Original entry on oeis.org

0, 3, 39, 387, 3471, 29643, 246519, 2019027, 16386591, 132264603, 1063976199, 8541106467, 68475336111, 548535110763, 4391942995479, 35153854510707, 281322388820031, 2251036874232123, 18010583812216359, 144096114589527747, 1152826137175206351, 9222895199696572683
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n - 5^n: n in [0..20]];
    
  • Mathematica
    Table[8^n-5^n,{n,0,20}] (* or *) LinearRecurrence[{13,-40},{0,3},30] (* Harvey P. Dale, Dec 04 2012 *)
    CoefficientList[Series[3 x/((1 - 5 x) (1 - 8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
  • PARI
    a(n)=8^n-5^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 13*a(n-1) - 40*a(n-2).
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 3*x/((1-5*x)*(1-8*x)).
a(n+1) = 3*A016162(n). (End)
E.g.f.: 2*exp(13*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Mar 31 2025

A025992 Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)).

Original entry on oeis.org

1, 22, 313, 3666, 38493, 377286, 3529681, 31947322, 282198565, 2447183310, 20920905369, 176852694018, 1481626607917, 12322682753494, 101879323774177, 838170485025354, 6867569457133749, 56077266261254238
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, May 09 2013: (Start)
a(n) - 2*a(n-1), for n>0, gives A019928 (after 1);
a(n) - 5*a(n-1), for n>0, gives A016311 (after 1);
a(n) - 7*a(n-1), for n>0, gives A016297 (after 1);
a(n) - 8*a(n-1), for n>0, gives A016296 (after 1);
a(n) - 7*a(n-1) + 10*a(n-2), for n>1, gives A016177 (after 15);
a(n) - 9*a(n-1) + 14*a(n-2), for n>1, gives A016162 (after 13);
a(n) - 10*a(n-1) + 16*a(n-2), for n>1, gives A016161 (after 12);
a(n) - 12*a(n-1) + 35*a(n-2), for n>1, gives A016131 (after 10);
a(n) - 13*a(n-1) + 40*a(n-2), for n>1, gives A016130 (after 9);
a(n) - 15*a(n-1) + 56*a(n-2), for n>1, gives A016127 (after 7);
a(n) - 20*a(n-1) +131*a(n-2) -280*a(n-3), for n>2, gives A000079 (after 4);
a(n) - 17*a(n-1) +86*a(n-2) -112*a(n-3), for n>2, gives A000351 (after 25);
a(n) - 15*a(n-1) +66*a(n-2) -80*a(n-3), for n>2, gives A000420 (after 49);
a(n) - 14*a(n-1) +59*a(n-2) -70*a(n-3), for n>2, gives A001018 (after 64),
and naturally: a(n) - 22*a(n-1) + 171*a(n-2) - 542*a(n-3) + 560*a(n-4), for n>3, gives 0 (see Harvey P. Dale in Formula lines). (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)))); // Bruno Berselli, May 09 2013
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-5x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {22,-171,542,-560},{1,22,313,3666},30] (* Harvey P. Dale, Jan 29 2013 *)
  • PARI
    a(n) = n+=3; (5*8^n-9*7^n+5*5^n-2^n)/90 \\ Charles R Greathouse IV, Oct 03 2016
    
  • Python
    def A025992(n): return (5*pow(8,n+3)-9*pow(7,n+3)+pow(5,n+4)-pow(2,n+3))//90
    print([A025992(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024

Formula

a(0)=1, a(1)=22, a(2)=313, a(3)=3666, a(n) = 22*a(n-1) - 171*a(n-2) + 542*a(n-3) - 560*a(n-4). - Harvey P. Dale, Jan 29 2013
a(n) = (5*8^(n+3) - 9*7^(n+3) + 5^(n+4) - 2^(n+3))/90. - Yahia Kahloune, May 07 2013
E.g.f.: (1/90)*(-8*exp(2*x) + 625*exp(5*x) - 3087*exp(7*x) + 2560*exp(8*x)). - G. C. Greubel, Dec 27 2024

A248341 a(n) = 10^n - 7^n.

Original entry on oeis.org

0, 3, 51, 657, 7599, 83193, 882351, 9176457, 94235199, 959646393, 9717524751, 98022673257, 986158712799, 9903110989593, 99321776927151, 995252438490057, 9966767069430399, 99767369486012793, 998371586402089551, 9988601104814626857
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-7^n: A016177 (k=8), A191467 (k=9), this sequence(k=10), A139745 (k=11).

Programs

  • Magma
    [10^n-7^n: n in [0..30]];
  • Mathematica
    Table[10^n - 7^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x/((1 - 7 x) (1 - 10 x)), {x, 0, 30}], x]
    LinearRecurrence[{17,-70},{0,3},20] (* Harvey P. Dale, Dec 18 2020 *)

Formula

G.f.: 3*x/((1-7*x)*(1-10*x)).
a(n) = 17*a(n-1) - 70*a(n-2).
a(n) = A011557(n) - A000420(n).
a(n+1) = 3*A016181(n).
E.g.f.: 2*exp(17*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Apr 01 2025

A061252 a(n) = 16^n - 15^n.

Original entry on oeis.org

0, 1, 31, 721, 14911, 289201, 5386591, 97576081, 1732076671, 30276117361, 522861237151, 8942430185041, 151728638820031, 2557404559011121, 42864668012537311, 715027614225987601, 11878335717996660991
Offset: 0

Views

Author

Frank Ellermann, Jun 05 2001

Keywords

Comments

Number of ways to assign truth values to n quaternary conjunctions connected by disjunctions such that the proposition is true. For example, a(2) = 31, since for the proposition '(a & b & c & d) v (e & f & g & h)' there are 31 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over the alphabet {0,1,..,15} with at least one letter = 15. - Joerg Arndt, Jan 01 2023

Crossrefs

Base 8: A016177, 4: A005061, 2: A000225, 10: A016189.

Programs

  • Mathematica
    Table[16^n-15^n,{n,0,20}] (* or  *) LinearRecurrence[{31,-240},{0,1},20] (* Harvey P. Dale, Jan 23 2021 *)
  • PARI
    a(n) = 16^n - 15^n; \\ Michel Marcus, Aug 26 2013

Formula

a(0)=0, a(n) = 15*a(n-1) + 16^(n-1). - Vincenzo Librandi, Feb 09 2011
a(0)=0, a(1)=1, a(n) = 31*a(n-1) - 240*a(n-2). - Vincenzo Librandi, Feb 09 2011
a(n) = A001025(n) - A001024(n). - Michel Marcus, Aug 26 2013

A147670 Primes of the form 8^k-7^k.

Original entry on oeis.org

1273609, 6612607849, 2019169299698041, 151522599154859354635552921, 9745744932248196392577951049, 220850092209355591999793321040563526382178219220559368038951319096656329
Offset: 1

Views

Author

Keywords

Comments

The next term (a(7)) has 103 digits. - Harvey P. Dale, Jul 05 2023

Examples

			8^7-7^7 = 2097152-823543 = 1273609.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=8^n-7^n;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst
    Select[Table[8^n-7^n,{n,100}],PrimeQ] (* Harvey P. Dale, Jul 05 2023 *)
Previous Showing 11-15 of 15 results.