cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A287335 Nonnegative numbers k such that 3*k + 2 is a cube.

Original entry on oeis.org

2, 41, 170, 443, 914, 1637, 2666, 4055, 5858, 8129, 10922, 14291, 18290, 22973, 28394, 34607, 41666, 49625, 58538, 68459, 79442, 91541, 104810, 119303, 135074, 152177, 170666, 190595, 212018, 234989, 259562, 285791, 313730, 343433, 374954, 408347, 443666, 480965
Offset: 1

Views

Author

Bruno Berselli, May 23 2017

Keywords

Comments

Corresponding cubes are listed in A016791.
Primes in the sequence: 2, 41, 443, 1637, 22973, 34607, 91541, 234989, ...

Crossrefs

Subsequence of A047292.
Cf. A244728: nonnegative k such that 3*k is a cube.
Cf. A121628: nonnegative k such that 3*k + 1 is a cube.

Programs

  • Magma
    [9*n^3-9*n^2+3*n-1: n in [1..40]];
  • Mathematica
    Table[9 n^3 - 9 n^2 + 3 n - 1, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{2,41,170,443},40] (* Harvey P. Dale, Aug 28 2021 *)
  • Maxima
    makelist(9*n^3-9*n^2+3*n-1, n, 1, 40);
    
  • Python
    [9*n**3-9*n**2+3*n-1 for n in range(1,40)]
    
  • Sage
    [9*n^3-9*n^2+3*n-1 for n in (1..40)]
    

Formula

O.g.f.: x*(2 + 33*x + 18*x^2 + x^3)/(1 - x)^4.
E.g.f.: 1 - (1 - 3*x - 18*x^2 - 9*x^3)*exp(x).
a(n) = 9*n^3 - 9*n^2 + 3*n - 1.
a(n) = A131476(3*n-1) = A212069(3*n-1).

A370753 Antidiagonal products of A319840.

Original entry on oeis.org

1, 1, 4, 36, 576, 12800, 360000, 12192768, 481890304, 21743271936, 1101996057600, 61952000000000, 3824628881965056, 257164113195565056, 18704075505689706496, 1462975070062038220800, 122444006400000000000000, 10918111308394619734065152, 1033255398127440061257744384
Offset: 0

Views

Author

Stefano Spezia, Jun 22 2024

Keywords

Comments

a(n) has trailing zeros iff n is congruent to 0 or 1 mod 5. Cf. A008851.
a(n) is a square iff n = 1 or congruent to {1, 3, 4} mod 5. Cf. A047206.
It appears that: (Start)
a(n) is a cube iff n = 0, 1, or is of the form (3*m - 4)^3 with m > 1 (A016791);
the only fourth powers in the sequence are 1 and a(9) = 21743271936 = 384^4;
the only fifth powers in the sequence are 1 and a(32) = 227200942336^5;
a(n) is a sixth power iff n = 0, 1, or is of the form (6*m - 10)^3 with m > 1;
the only seventh powers in the sequence are 1 and a(128) = 77458109039896212820250015287665035595218944^7. (End)

Crossrefs

Programs

  • Mathematica
    a[0]=a[1]=1; a[n_]:=n^2*2^(n-2)*(n-1)^(n-2); Array[a,19,0]

Formula

a(0) = a(1) = 1, and a(n) = n^2*2^(n-2)*(n - 1)^(n-2) for n > 1.

A016800 a(n) = (3*n + 2)^12.

Original entry on oeis.org

4096, 244140625, 68719476736, 3138428376721, 56693912375296, 582622237229761, 4096000000000000, 21914624432020321, 95428956661682176, 353814783205469041, 1152921504606846976, 3379220508056640625, 9065737908494995456, 22563490300366186081, 52654090776777588736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016789(n)^12 = A016790(n)^6 = A016791(n)^4 = A016792(n)^3 = A016794(n)62.
Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/21213424108800. (End)

A017619 a(n) = (12*n + 8)^3.

Original entry on oeis.org

512, 8000, 32768, 85184, 175616, 314432, 512000, 778688, 1124864, 1560896, 2097152, 2744000, 3511808, 4410944, 5451776, 6644672, 8000000, 9528128, 11239424, 13144256, 15252992, 17576000, 20123648
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [(12*n+8)^3 : n in [0..30]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    (12*Range[0,30]+8)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{512,8000,32768,85184},30] (* Harvey P. Dale, Dec 14 2015 *)

Formula

From R. J. Mathar, Jun 24 2009: (Start)
G.f.: 64*(8 + 93*x + 60*x^2 + x^3)/(-1+x)^4.
a(n) = 64*A016791(n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=512, a(1)=8000, a(2)=32768, a(3)=85184. - Harvey P. Dale, Dec 14 2015

A370000 Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+2)^3.

Original entry on oeis.org

1, 1, 8, 4, 3, 8, 7, 7, 8, 4, 2, 5, 0, 5, 7, 5, 2, 9, 6, 2, 5, 6, 1, 6, 8, 6, 1, 9, 4, 3, 0, 2, 5, 4, 3, 8, 7, 3, 2, 8, 8, 7, 9, 8, 2, 9, 7, 8, 3, 5, 6, 6, 8, 2, 4, 8, 0, 7, 9, 6, 8, 5, 0, 3, 4, 4, 7, 5, 5, 7, 1, 7, 5, 8, 4, 1, 0, 2, 8, 2, 0, 4, 2, 9, 0, 0, 4, 5, 9, 6, 2, 1, 1, 9
Offset: 0

Views

Author

R. J. Mathar, Feb 07 2024

Keywords

Examples

			1/8 - 1/125 + 1/512 - 1/1331 + ... = 0.118438778425057529625616861943025438732887982...
		

Crossrefs

Programs

  • Maple
    5*Pi^3/2/3^(9/2)-13*Zeta(3)/36 ; evalf(%) ;
  • Mathematica
    RealDigits[5*Pi^3/(2*3^(9/2)) - 13*Zeta[3]/36, 10, 120][[1]] (* Amiram Eldar, Feb 09 2024 *)
  • PARI
    sumalt(k=0, (-1)^k/(3*k+2)^3) \\ Michel Marcus, Feb 07 2024

Formula

Equals Sum_{n>=0} (-1)^n/A016791(n).
Equals A226735 - 13*zeta(3)/18 = 5*Pi^3/(2*3^(9/2)) - 13*zeta(3)/36.
Previous Showing 11-15 of 15 results.