cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A016929 a(n) = (6*n + 1)^9.

Original entry on oeis.org

1, 40353607, 10604499373, 322687697779, 3814697265625, 26439622160671, 129961739795077, 502592611936843, 1628413597910449, 4605366583984375, 11694146092834141, 27206534396294947, 58871586708267913, 119851595982618319, 231616946283203125, 427929800129788411
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^9: n in [0..25]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6*Range[0,20]+1)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,40353607,10604499373,322687697779,3814697265625,26439622160671,129961739795077,502592611936843,1628413597910449,4605366583984375},20] (* Harvey P. Dale, Mar 22 2015 *)

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Mar 22 2015
From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^9 = A016923(n)^3.
Sum_{n>=0} 1/a(n) = 15371*Pi^9/(529079040*sqrt(3)) + 5028751*zeta(9)/10077696. (End)

A016930 a(n) = (6*n + 1)^10.

Original entry on oeis.org

1, 282475249, 137858491849, 6131066257801, 95367431640625, 819628286980801, 4808584372417849, 21611482313284249, 79792266297612001, 253295162119140625, 713342911662882601, 1822837804551761449, 4297625829703557649, 9468276082626847201, 19687440434072265625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^10: n in [0..25]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    (6 Range[0, 15] + 1)^10 (* Wesley Ivan Hurt, Jan 15 2022 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,282475249,137858491849,6131066257801,95367431640625,819628286980801,4808584372417849,21611482313284249,79792266297612001,253295162119140625,713342911662882601},20] (* Harvey P. Dale, Sep 05 2023 *)

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^10 = A016922(n)^5 = A016925(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(9, 1/6)/21941965946880. (End)

A377560 Decimal expansion of Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.

Original entry on oeis.org

1, 0, 0, 3, 6, 8, 5, 5, 1, 5, 3, 4, 7, 9, 5, 2, 6, 9, 7, 0, 6, 3, 2, 3, 0, 1, 3, 7, 0, 2, 4, 8, 6, 0, 5, 7, 3, 1, 5, 2, 7, 2, 7, 8, 4, 3, 5, 9, 3, 8, 9, 3, 3, 2, 7, 8, 6, 6, 5, 7, 9, 0, 8, 5, 3, 1, 5, 3, 9, 2, 7, 3, 2, 7, 3, 6, 5, 8, 9, 1, 5, 9, 3, 9, 5, 6, 2, 5, 8, 3, 4, 8, 5, 8, 4, 6, 1, 0, 4, 0
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.00368551534795269706323013702486057315272784359...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/(36*Sqrt[3])+91*Zeta[3]/216,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(6*k + 1)^3 (see Finch).
Equals -psi''(1/6)/432 (see Shamos).

A016931 a(n) = (6*n + 1)^11.

Original entry on oeis.org

1, 1977326743, 1792160394037, 116490258898219, 2384185791015625, 25408476896404831, 177917621779460413, 929293739471222707, 3909821048582988049, 13931233916552734375, 43513917611435838661, 122130132904968017083, 313726685568359708377, 747993810527520928879
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^11.
Sum_{n>=0} 1/a(n) = 1261501*Pi^11/(428554022400*sqrt(3)) + 181308931*zeta(11)/362797056. (End)

A166853 a(n) is the smallest number m such that m^m-n is prime, or zero if there is no such m.

Original entry on oeis.org

2, 2, 8, 3, 4, 5, 6, 3, 0, 3, 78, 13, 6, 3, 4, 3, 4, 17, 12, 3, 118, 3, 4, 3, 3
Offset: 1

Views

Author

Keywords

Comments

The sequence with the unknown terms a(n) indicated by -n:
(0's occur for n=9, 49, 81, 121....)
2,2,8,3,4,5,6,3,0,3,78,13,6,3,4,3,4,17,12,3,118,3,4,3,3,
-26,4,-28,4,487,90,9,4,-34,24,5,6,271,28,969,-41,5,-43,7,4,5,32,37,0,621,
20,15,34,7,6,9,4,5,4,7,-61,7,4,5,4,-66,6,63,134,27,10,35,102,31,4,
5,4,569,-79,13,0,15,4,5,-85,7,110,5,4,131,1122,7,4,11,8,7,6,9,4,-100,
22,5,-103,-104,4,5,4,11,12,39,-111,...
If they exist, the first two unknown terms, a(26) and a(28), they are greater than 10000. All other unknown terms a(n), for n<112 are greater than 4000.
If it exists, a(26) > 25000. - Robert Price, Apr 26 2019

Examples

			We have a(1)=2 since 1^1-1 is not prime, but 2^2-1 is prime.
a(9)=0 since 2^2-9 is not prime, and if m is an even number greater than 2 then m^m-9=(m^(m/2)-3)*(m^(m/2)+3) is composite. So there is no number m such that m^m-9 is prime. The same applies to any odd square > 25.
We have a(25)=3 since 3^3-25=2 is prime. But 25 is the only known square of the form m^m-2, so a(n)=0 for other odd squares > 25, e.g., n = 49,81,121,....
a(115)=2736 is the largest known term. 2736^2736-115 is a probable prime.
		

Crossrefs

Formula

a(n)=0 if n=3^2 or n=(2k+1)^2 > 25, or n = (6k+1)^3 = A016923(k) with k>0.

A016932 a(n) = (6*n + 1)^12.

Original entry on oeis.org

1, 13841287201, 23298085122481, 2213314919066161, 59604644775390625, 787662783788549761, 6582952005840035281, 39959630797262576401, 191581231380566414401, 766217865410400390625, 2654348974297586158321, 8182718904632857144561, 22902048046490258711521
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+1)^12: n in [0..20]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    Table[(6*n + 1)^12, {n, 0, 12}] (* Amiram Eldar, Mar 28 2022 *)

Formula

From Amiram Eldar, Mar 28 2022: (Start)
a(n) = A016921(n)^12 = A016922(n)^6 = A016923(n)^4 = A016924(n)^3 = A016926(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(11, 1/6)/86890185149644800. (End)

A289134 a(n) = 21*n^2 - 33*n + 13.

Original entry on oeis.org

1, 31, 103, 217, 373, 571, 811, 1093, 1417, 1783, 2191, 2641, 3133, 3667, 4243, 4861, 5521, 6223, 6967, 7753, 8581, 9451, 10363, 11317, 12313, 13351, 14431, 15553, 16717, 17923, 19171, 20461, 21793, 23167, 24583, 26041, 27541, 29083, 30667, 32293
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of all cells in a cellular-automata-like hexagonal lattice growth from a single active seed, based upon whether each hexagonal unit is active plus how many active neighbors each cell is touching for all active cells in the lattice.
The initial hexagonal seed starts with a single 1 representing it is active and touching no active neighbors. In the next time step, all inactive hexagonal neighboring spaces in the surrounding hexagonal lattice which were touching the active seed via edges become active and all active cells are summed together based on whether they are active plus how many active neighbors they are touching via their edges. This continues for each time step with inactive neighbors touching active neighbors in the previous time step becoming active in the current step followed by the described summing.

Crossrefs

Cf. A033574 (analog for square tiling, von Neumann neighborhood), A016922 (analog for square tiling, Moore neighborhood), A016923 (analog for cubic 3D tiling, Moore neighborhood), A064762.

Programs

  • Mathematica
    hexgro[t_]:=7+4*6+5*6*(t-2)+Sum[i*6*7,{i,t-2}]; Table[hexgro[n],{n,40}]
    LinearRecurrence[{3,-3,1},{1,31,103},40] (* Harvey P. Dale, Apr 23 2020 *)
  • PARI
    Vec(x*(1 + 28*x + 13*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jun 28 2017

Formula

G.f.: x*(1 + 28*x + 13*x^2) / (1 - x)^3. - Colin Barker, Jun 28 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - Colin Barker, Jul 29 2017

Extensions

New Name from Omar E. Pol, Jun 25 2017
Previous Showing 11-17 of 17 results.