cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A017020 a(n) = (7*n + 3)^4.

Original entry on oeis.org

81, 10000, 83521, 331776, 923521, 2085136, 4100625, 7311616, 12117361, 18974736, 28398241, 40960000, 57289761, 78074896, 104060401, 136048896, 174900625, 221533456, 276922881, 342102016, 418161601
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(7*n+3)^4: n in [0..35]]; // Vincenzo Librandi, Jul 14 2011
    
  • Mathematica
    (7*Range[0,20]+3)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1},{81,10000,83521,331776,923521},30] (* Harvey P. Dale, Oct 29 2019 *)
  • SageMath
    [(7*n+3)^4 for n in range(41)] # G. C. Greubel, Oct 17 2023

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (81 + 9595*x + 34331*x^2 + 13361*x^3 + 256*x^4)/(1 - x)^5.
E.g.f.: (81 + 9919*x + 31801*x^2 + 18522*x^3 + 2401*x^4)*exp(x). (End)

A017021 a(n) = (7*n + 3)^5.

Original entry on oeis.org

243, 100000, 1419857, 7962624, 28629151, 79235168, 184528125, 380204032, 714924299, 1252332576, 2073071593, 3276800000, 4984209207, 7339040224, 10510100501, 14693280768, 20113571875, 27027081632, 35723051649, 46525874176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(7*n+3)^5: n in [0..35]]; // Vincenzo Librandi, Jul 14 2011
    
  • Mathematica
    (7*Range[0,20]+3)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{243,100000,1419857,7962624,28629151,79235168},20] (* Harvey P. Dale, Aug 27 2017 *)
  • SageMath
    [(7*n+3)^5 for n in range(41)] # G. C. Greubel, Oct 17 2023

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (243 + 98542*x + 823502*x^2 + 938622*x^3 + 154907*x^4 + 1024*x^5)/(1-x)^6.
E.g.f.: (243 + 99757*x + 610050*x^2 + 667135*x^3 + 204085*x^4 + 16807*x^5)*exp(x). (End)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Jun 26 2025

A017022 a(n) = (7*n + 3)^6.

Original entry on oeis.org

729, 1000000, 24137569, 191102976, 887503681, 3010936384, 8303765625, 19770609664, 42180533641, 82653950016, 151334226289, 262144000000, 433626201009, 689869781056, 1061520150601, 1586874322944
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (729 + 994897*x + 17152878*x^2 + 43114478*x^3 + 21697313*x^4 + 1742889*x^5 + 4096*x^6)/(1-x)^7.
E.g.f.: (729 + 999271*x + 11069149*x^2 + 20281590*x^3 + 10996580*x^4 + 2067261*x^5 + 117649*x^6)*exp(x). (End)

A017023 a(n) = (7*n + 3)^7.

Original entry on oeis.org

2187, 10000000, 410338673, 4586471424, 27512614111, 114415582592, 373669453125, 1028071702528, 2488651484819, 5455160701056, 11047398519097, 20971520000000, 37725479487783, 64847759419264
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(7*n+3)^7: n in [0..30]]; // Vincenzo Librandi, Jul 14 2011
    
  • Mathematica
    (7*Range[0,30]+3)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28, 8,-1}, {2187,10000000,410338673,4586471424,27512614111,114415582592, 373669453125,1028071702528}, 30] (* Harvey P. Dale, Jul 07 2020 *)
  • SageMath
    [(7*n+3)^7 for n in range(41)] # G. C. Greubel, Oct 17 2023

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (2187 + 9982504*x + 330399909*x^2 + 1583639568*x^3 + 1750478653*x^4 + 456781416*x^5 + 19356099*x^6 + 16384*x^7)/(1-x)^8.
E.g.f.: (2187 + 9997813*x + 195170430*x^2 + 564242203*x^3 + 482865110*x^4 + 155531978*x^5 + 19765032*x^6 + 823543*x^7)*exp(x). (End)

A168331 a(n) = (5 + 14*n + 7*(-1)^n)/4.

Original entry on oeis.org

3, 10, 10, 17, 17, 24, 24, 31, 31, 38, 38, 45, 45, 52, 52, 59, 59, 66, 66, 73, 73, 80, 80, 87, 87, 94, 94, 101, 101, 108, 108, 115, 115, 122, 122, 129, 129, 136, 136, 143, 143, 150, 150, 157, 157, 164, 164, 171, 171, 178, 178, 185, 185, 192, 192, 199, 199, 206, 206
Offset: 1

Views

Author

Vincenzo Librandi, Nov 23 2009

Keywords

Comments

Essentially the same as A168376.

Crossrefs

Programs

  • Magma
    [5/4+7*n/2+7*(-1)^n/4: n in [1..70]]; // Vincenzo Librandi, Sep 17 2013
  • Maple
    A168331:=n->(5+14*n+7*(-1)^n)/4: seq(A168331(n), n=1..100); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    Table[5/4 + 7n/2 + 7 (-1)^n/4, {n,60}] (* or *) LinearRecurrence[{1, 1, -1}, {3, 10, 10}, 60] (* Harvey P. Dale, Oct 24 2011 *)
    CoefficientList[Series[- (- 3 - 7 x + 3 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 17 2013 *)

Formula

a(n) = 7*n - a(n-1) - 1, with n > 1, a(1)=3.
G.f.: x*(3+7*x-3*x^2) / ((1+x)*(x-1)^2). - R. J. Mathar, Jan 05 2011
a(1)=3, a(2)=10, a(3)=10; for n>3, a(n) = a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, Oct 24 2011
E.g.f.: (1/4)*(7 - 12*exp(x) + (5 + 14*x)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 18 2016

Extensions

New definition by R. J. Mathar, Jan 05 2011

A177071 a(n) = (7*n + 3)*(7*n + 4).

Original entry on oeis.org

12, 110, 306, 600, 992, 1482, 2070, 2756, 3540, 4422, 5402, 6480, 7656, 8930, 10302, 11772, 13340, 15006, 16770, 18632, 20592, 22650, 24806, 27060, 29412, 31862, 34410, 37056, 39800, 42642, 45582, 48620, 51756, 54990, 58322, 61752, 65280, 68906, 72630, 76452
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. Zumkeller's contribution in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2, therefore a(n) = 49*A002061(n+1) - 37. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Mathematica
    Table[(7n+3)(7n+4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{12,110,306},40] (* Harvey P. Dale, Oct 09 2011 *)
  • PARI
    a(n)=2*binomial(7*n+4,2) \\ Charles R Greathouse IV, Jan 11 2012

Formula

a(n) = 98*n + a(n-1) with n > 0, a(0)=12.
From Harvey P. Dale, Oct 09 2011: (Start)
a(0)=12, a(1)=110, a(2)=306, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -((2*(x+6)*(6*x+1))/(x-1)^3). (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017017(n)*A017029(n).
Sum_{n>=0} 1/a(n) = tan(Pi/14)*Pi/7.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/14)*cos(sqrt(5)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/14)*cosh(sqrt(3)*Pi/14). (End)
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(12 + 49*x*(2 + x)).
a(n) = 2*A061792(n). (End)

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A017019 a(n) = (7*n + 3)^3.

Original entry on oeis.org

27, 1000, 4913, 13824, 29791, 54872, 91125, 140608, 205379, 287496, 389017, 512000, 658503, 830584, 1030301, 1259712, 1520875, 1815848, 2146689, 2515456, 2924207, 3375000, 3869893, 4410944, 5000211
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (27 + 892*x + 1075*x^2 + 64*x^3)/(1 - x)^4.
E.g.f.: (27 + 973*x + 1470*x^2 + 343*x^3)*exp(x). (End)

A017024 a(n) = (7*n + 3)^8.

Original entry on oeis.org

6561, 100000000, 6975757441, 110075314176, 852891037441, 4347792138496, 16815125390625, 53459728531456, 146830437604321, 360040606269696, 806460091894081, 1677721600000000, 3282116715437121, 6095689385410816
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Oct 17 2023: (Start)
G.f.: (6561 +99940951*x +6075993637*x^2 +50892946083*x^3 +104941304419*x^4 +61119660133*x^5 +9093089943*x^6 +213769057*x^7 +65536*x^8)/(1-x)^9.
E.g.f.: (6561 +99993439*x +3387882001*x^2 +14908005882*x^3 +18918513831*x^4 +9290270934*x^5 +1978150286*x^6 +181179460*x^7 +5764801*x^8)*exp(x). (End)

A137185 Lucky numbers (A000959) which are congruent to 3 mod 7.

Original entry on oeis.org

3, 31, 73, 87, 115, 129, 171, 241, 283, 297, 339, 367, 409, 451, 535, 577, 591, 619, 717, 745, 787, 801, 885, 927, 997, 1011, 1039, 1053, 1095, 1123, 1179, 1249, 1263, 1291, 1389, 1417, 1459, 1473, 1501, 1543, 1585, 1599, 1641, 1711, 1767, 1809, 1879, 1893, 1921
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A017017.

A195029 a(n) = n*(14*n + 13) + 3.

Original entry on oeis.org

3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the line from 3, in the direction 3, 30, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the semi-diagonal parallel to A195024 and also parallel to A195028 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
56*a(n) + 1 is a perfect square. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
a(n) = A005408(n)*A017017(n) = A022264(2*n+1). (End)

Extensions

Edited by Bruno Berselli, Feb 14 2017
Previous Showing 11-20 of 23 results. Next