cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A278545 Number of neighbors of the n-th term in a full square array read by antidiagonals.

Original entry on oeis.org

3, 5, 5, 5, 8, 5, 5, 8, 8, 5, 5, 8, 8, 8, 5, 5, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2016

Keywords

Comments

Apart from the first row and the first column, the rest of the elements are 8's.
For the same idea but for a right triangle see A278480; for an isosceles triangle see A278481; for a square spiral see A010731; and for a hexagonal spiral see A010722.

Examples

			The corner of the square array begins:
3,5,5,5,5,5,5,5,5,5,...
5,8,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,...
5,8,8,8,8,8,...
5,8,8,8,8,...
5,8,8,8,...
5,8,8,...
5,8,...
5,...
...
		

Crossrefs

Antidiagonal sums give 3 together with the elements > 2 of A017089.

Programs

  • Maple
    3, seq(op([5,8$i,5]),i=0..20); # Robert Israel, Dec 04 2016

Formula

G.f. 3+x+8*x/(1-x)-3*(1+x)*Theta_2(0,sqrt(x))/(2*x^(1/8)) where Theta_2 is a Jacobi Theta function. - Robert Israel, Dec 04 2016

A017090 a(n) = (8*n + 2)^2.

Original entry on oeis.org

4, 100, 324, 676, 1156, 1764, 2500, 3364, 4356, 5476, 6724, 8100, 9604, 11236, 12996, 14884, 16900, 19044, 21316, 23716, 26244, 28900, 31684, 34596, 37636, 40804, 44100, 47524, 51076, 54756, 58564, 62500, 66564, 70756, 75076, 79524, 84100, 88804, 93636, 98596
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006752, A016814, A017089 (8n+2), A000290 (n^2).

Programs

Formula

G.f.: -4*(1 + 22*x + 9*x^2)/(x-1)^3. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^2.
a(n) = 2^2*A016814(n).
Sum_{n>=0} 1/a(n) = Pi^2/64 + G/8, where G is Catalan's constant (A006752). (End)

A047468 Numbers that are congruent to {1, 2} mod 8.

Original entry on oeis.org

1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, 42, 49, 50, 57, 58, 65, 66, 73, 74, 81, 82, 89, 90, 97, 98, 105, 106, 113, 114, 121, 122, 129, 130, 137, 138, 145, 146, 153, 154, 161, 162, 169, 170, 177, 178, 185, 186, 193, 194, 201, 202, 209, 210, 217, 218, 225, 226, 233
Offset: 1

Views

Author

Keywords

Crossrefs

Union of A017077 and A017089.
Cf. A047467.

Programs

  • Mathematica
    Flatten[#+{1,2}&/@(8Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{1,2,9},60] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n)=(n-1)\2*8+2-n%2 \\ Charles R Greathouse IV, May 14 2012

Formula

a(n) = 8*n - a(n-1) - 13 (with a(1)=1). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+x+6*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = 1 + 8*floor((n-1)/2) + ((n-1) mod 2). - Alois P. Heinz, May 13 2012
a(n) = (-3*(3 + (-1)^n) + 8*n)/2. - Colin Barker, May 14 2012
a(1)=1, a(2)=2, a(3)=9, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Mar 26 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + ((8*x - 9)*exp(x) - 3*exp(-x))/2. - David Lovler, Sep 02 2022

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A101492 Triangle read by rows: T(n,k) = (n-k+1)*(4*k+1).

Original entry on oeis.org

1, 2, 5, 3, 10, 9, 4, 15, 18, 13, 5, 20, 27, 26, 17, 6, 25, 36, 39, 34, 21, 7, 30, 45, 52, 51, 42, 25, 8, 35, 54, 65, 68, 63, 50, 29, 9, 40, 63, 78, 85, 84, 75, 58, 33, 10, 45, 72, 91, 102, 105, 100, 87, 66, 37, 11, 50, 81, 104, 119, 126, 125, 116, 99, 74, 41, 12, 55, 90, 117
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 5 0 0...
1 5 9 0...
1 5 9 13...
...
T(n+0,0) = 1*n = A000027(n+1),
T(n+0,1) = 5*n = A008587(n),
T(n+1,2) = 9*n = A008591(n),
T(n+2,3) = 13*n = A008595(n),
so, for example,
T(n,n) = 4*n+1 = A016813(n),
T(n+1,n) = 8*n+2 = A017089(n),
T(n,0)*T(n,1)/10 = A000217(n) (triangular numbers),
T(n,n)*T(n,0) = A001107(n+1) (10-gonal numbers: 4*n^2 - 3*n),
T(n,n)*T(n,1)/5 = A007742(n).

Crossrefs

Row sums give hexagonal pyramidal numbers A002412.
Cf. A101493 for product B*A, A002412.

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->(n+1-k)*(4*k+1)))); # Muniru A Asiru, Mar 07 2019
    
  • Magma
    [[(n+1-k)*(4*k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Mathematica
    Flatten[Table[(n+1-k)(4k+1),{n,0,15},{k,0,n}]] (* Harvey P. Dale, Jun 09 2011 *)
  • PARI
    T(n, k) = if(k>n,0,(n-k+1)*(4*k+1));
    for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
    
  • Sage
    [[(n-k+1)*(4*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019

A103219 Triangle read by rows: T(n,k) = (n+1-k)*(4*(n+1-k)^2 - 1)/3+2*k*(n+1-k)^2.

Original entry on oeis.org

1, 10, 3, 35, 18, 5, 84, 53, 26, 7, 165, 116, 71, 34, 9, 286, 215, 148, 89, 42, 11, 455, 358, 265, 180, 107, 50, 13, 680, 553, 430, 315, 212, 125, 58, 15, 969, 808, 651, 502, 365, 244, 143, 66, 17, 1330, 1131, 936, 749, 574, 415, 276, 161, 74, 19, 1771, 1530, 1293
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 26 2005

Keywords

Comments

The triangle is generated from the product B * A of the infinite lower triangular matrices A =
1 0 0 0...
3 1 0 0...
5 3 1 0...
7 5 3 1...
...
and B =
1 0 0 0...
1 3 0 0...
1 3 5 0...
1 3 5 7...
...

Examples

			Triangle begins:
1,
10,3,
35,18,5,
84,53,26,7,
165,116,71,34,9,
286,215,148,89,42,11,
		

Crossrefs

Row sums give A103220.
T(n, 0) = (n+1)*(4*(n+1)^2 - 1)/3 = A000447(n+1);
T(n+1, n)= 8*n+2 = A017089(n+1);
Cf. A103218 (for product A*B), A103220.

Programs

  • Mathematica
    T[n_, k_] := (n + 1 - k)*(4*(n + 1 - k)^2 - 1)/3 + 2*k*(n + 1 - k)^2; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
  • PARI
    T(n,k)=(n+1-k)*(4*(n+1-k)^2-1)/3+2*k*(n+1-k)^2; for(i=0,10, for(j=0,i,print1(T(i,j),","));print())

A380820 a(0) = 0, a(1) = 1, and for n >= 2, a(n) = a(n-1) + a(n-2) if a(n-1) < n, otherwise a(n-1) - n.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9, 18, 5, 23, 8, 31, 14, 45, 26, 6, 32, 10, 42, 18, 60, 34, 7, 41, 12, 53, 22, 75, 42, 8, 50, 14, 64, 26, 90, 50, 9, 59, 16, 75, 30, 105, 58, 10, 68, 18, 86, 34, 120, 66, 11, 77, 20, 97, 38, 135, 74, 12, 86, 22, 108, 42, 150
Offset: 0

Views

Author

Ya-Ping Lu, Feb 04 2025

Keywords

Comments

Sequence starts with the first 7 Fibonacci numbers. For n >= 12, a(n) takes the values of (8*n+30)/7, (n+22)/7, (9*n+35)/7, (2*n+26)/7, (11*n+41)/7, (4*n+30)/7, and (15*n+45)/7 sequentially for n = 5, 6, 0, 1, 2, 3, 4 mod 7 (see plot in Links), which correspond to A017089 (n>=2), A000027 (n>=5), A017221 (n>=2), A005843 (n>=4), A017497 (n>=2), A016825 (n>=3), and A008597 (n>=3), respectively.
Terms for n >= 16 are the same as A322558(n) for n >= 17.

Crossrefs

Programs

  • Mathematica
    s={0,1};Do[AppendTo[s,If[s[[-1]]James C. McMahon, Feb 14 2025 *)
  • Python
    def A380820(n): R = [0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9]; X = [9, 2, 11, 4, 15, 8, 1]; Y = [35, 26, 41, 30, 45, 30, 22]; return R[n] if n < 12 else (X[n%7]*n + Y[n%7])//7

Formula

a(n) = A322558(n+1) for n >= 16.

A017091 a(n) = (8*n + 2)^3.

Original entry on oeis.org

8, 1000, 5832, 17576, 39304, 74088, 125000, 195112, 287496, 405224, 551368, 729000, 941192, 1191016, 1481544, 1815848, 2197000, 2628072, 3112136, 3652264, 4251528, 4913000, 5639752, 6434856, 7301384, 8242408, 9261000, 10360232, 11543176, 12812904, 14172488, 15625000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002117, A016815, A017089 (8n+2), A000578 (n^3).

Programs

  • Magma
    [(8*n+2)^3: n in [0..35]]; // Vincenzo Librandi, Jul 12 2011
  • Mathematica
    (8*Range[0,30]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,1000,5832,17576},30] (* Harvey P. Dale, Dec 30 2019 *)

Formula

G.f.: 8*(1 + 121*x + 235*x^2 + 27*x^3)/(x-1)^4. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^3.
a(n) = 2^3*A016815(n).
Sum_{n>=0} 1/a(n) = Pi^3/512 + 7*zeta(3)/128. (End)

A017092 a(n) = (8*n + 2)^4.

Original entry on oeis.org

16, 10000, 104976, 456976, 1336336, 3111696, 6250000, 11316496, 18974736, 29986576, 45212176, 65610000, 92236816, 126247696, 168896016, 221533456, 285610000, 362673936, 454371856, 562448656
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017089 (8n+2), A000583 (n^4).

Programs

  • Magma
    [(8*n+2)^4: n in [0..30]]; // Vincenzo Librandi, Jul 12 2011
  • Mathematica
    (8*Range[0,20]+2)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1},{16,10000,104976,456976,1336336},20] (* Harvey P. Dale, Dec 16 2017 *)

Formula

G.f.: -16*(1 + 620*x + 3446*x^2 + 1996*x^3 + 81*x^4)/(x-1)^5. - R. J. Mathar, Jul 14 2016

A017093 a(n) = (8*n + 2)^5.

Original entry on oeis.org

32, 100000, 1889568, 11881376, 45435424, 130691232, 312500000, 656356768, 1252332576, 2219006624, 3707398432, 5904900000, 9039207968, 13382255776, 19254145824, 27027081632, 37129300000, 50049003168, 66338290976, 86617093024, 111577100832, 141985700000, 178689902368
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013663, A016817, A017089 (8n+2), A000584 (n^5).

Programs

Formula

G.f.: 32*(1 + 3119*x + 40314*x^2 + 63854*x^3 + 15349*x^4 + 243*x^5)/(x-1)^6. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^5.
a(n) = 2^5*A016817(n).
Sum_{n>=0} 1/a(n) = 5*Pi^5/98304 + 31*zeta(5)/2048. (End)

A017094 a(n) = (8*n + 2)^6.

Original entry on oeis.org

64, 1000000, 34012224, 308915776, 1544804416, 5489031744, 15625000000, 38068692544, 82653950016, 164206490176, 304006671424, 531441000000, 885842380864, 1418519112256, 2194972623936, 3297303959104
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017089 (8n+2), A001014 (n^6).

Programs

Previous Showing 11-20 of 27 results. Next