cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A017298 a(n) = (10*n + 2)^6.

Original entry on oeis.org

64, 2985984, 113379904, 1073741824, 5489031744, 19770609664, 56800235584, 139314069504, 304006671424, 606355001344, 1126162419264, 1973822685184, 3297303959104, 5289852801024, 8198418170944
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001014 (n^6), A017293 (10n+2).

Programs

  • Magma
    [(10*n+2)^6: n in [0..25]]; // Vincenzo Librandi, Jul 30 2011
    
  • Mathematica
    (10*Range[0,20]+2)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{64,2985984,113379904,1073741824,5489031744,19770609664,56800235584},20] (* Harvey P. Dale, Aug 12 2012 *)
  • Python
    for n in range(0, 25): print((10*n + 2)**6, end=", ") # Stefano Spezia, Oct 20 2018

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=64, a(1)=2985984, a(2)=113379904, a(3)=1073741824, a(4)=5489031744, a(5)=19770609664, a(6)=56800235584. - Harvey P. Dale, Aug 12 2012

A031919 a(n) = prime(10*n-8).

Original entry on oeis.org

3, 37, 79, 131, 181, 239, 293, 359, 421, 479, 557, 613, 673, 743, 821, 881, 953, 1021, 1091, 1163, 1231, 1301, 1399, 1459, 1531, 1601, 1667, 1747, 1831, 1907, 1997, 2069, 2137, 2237, 2297, 2377, 2441, 2543, 2633, 2693, 2753, 2837, 2917
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A000040(A017293(n-1)). - Michel Marcus, May 04 2020

A154405 Primes of the form 20n^2+8n+1.

Original entry on oeis.org

29, 97, 353, 541, 769, 1693, 2081, 4621, 8161, 9857, 13729, 14797, 17053, 19469, 24781, 26209, 32321, 35617, 42689, 48413, 54497, 65437, 72481, 77377, 85021, 87649, 95773, 98561, 125453, 141793, 148609, 152077, 166349, 177473, 185089
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Examples

			For n=1, a(1)=29; n=2, a(2)=97
		

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 20*n^2+8*n+1];
  • Mathematica
    Select[Table[20n^2+8n+1,{n,0,600}],PrimeQ]

Extensions

12701 removed, 32321 inserted, 18609 replaced by 148609 - R. J. Mathar, Feb 19 2009
Misleading formula removed - R. J. Mathar, Oct 18 2010

A277987 a(n) = 100*n - 28.

Original entry on oeis.org

-28, 72, 172, 272, 372, 472, 572, 672, 772, 872, 972, 1072, 1172, 1272, 1372, 1472, 1572, 1672, 1772, 1872, 1972, 2072, 2172, 2272, 2372, 2472, 2572, 2672, 2772, 2872, 2972, 3072, 3172, 3272, 3372, 3472, 3572, 3672, 3772, 3872, 3972
Offset: 0

Views

Author

Emeric Deutsch, Nov 12 2016

Keywords

Comments

For n>=1, a(n) is the second Zagreb index of the tetrameric 1,3-adamantane TA[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of the tetrameric 1,3-adamantane can be viewed in the G. H. Fath-Tabar et al. reference.
The M-polynomial of the tetrameric 1,3-adamantane TA[n] is M(TA[n],x,y) = 6*(n+1)*x^2*y^3 + 6*(n-1)*x^2*y^4 + (n-1)*x^4*y^4.

Crossrefs

Cf. A277986.

Programs

  • Magma
    [100*n-28: n in [0..40]]; // Vincenzo Librandi, Nov 13 2016
  • Maple
    seq(100*n-28, n = 0..40);
  • Mathematica
    100*Range[0,40]-28 (* or *) LinearRecurrence[{2,-1},{-28,72},50] (* Harvey P. Dale, Feb 13 2018 *)
  • PARI
    a(n) = 100*n - 28 \\ Felix Fröhlich, Nov 12 2016
    

Formula

G.f.: 4*(32*x - 7)/(1 - x)^2.
a(n) = A017293(10*n-3) for n > 0. - Felix Fröhlich, Nov 12 2016
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Nov 13 2016

A346651 a(n) is the number of divisors of A139245(n) ending with 2.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 5, 2, 3, 3, 2, 2, 4, 3, 2, 3, 4, 2, 4, 2, 3, 3, 2, 2, 5, 3, 2, 6, 2, 2, 4, 2, 3, 3, 3, 2, 4, 2, 4, 3, 3, 3, 5, 2, 2, 3, 2, 2, 7, 4, 2, 4, 2, 2, 4, 3, 3, 3, 2, 3, 6, 2, 3, 3, 4, 2, 4, 2, 2, 5, 2
Offset: 1

Views

Author

Stefano Spezia, Jul 26 2021

Keywords

Comments

a(n) is odd if and only if A139245(n) either is the square of a number ending with 2 or has a unitary prime divisor ending with 7.
The term 1 appears only for n = 1 in corresponding to A139245(1) = 4.

Examples

			a(14) = 4 since there are 4 divisors of A139245(14) = 264 ending with 2: 2, 12, 22 and 132.
		

Crossrefs

Cf. A000005, A017293 (numbers ending with 2), A017294 (squares of numbers ending with 2), A030432, A056169, A139245 (product of two numbers ending with 2), A346388, A346389.

Programs

  • Mathematica
    a[n_]:=Length[Drop[Select[Divisors[20n-16], (Last[IntegerDigits[#]]==2&)]]]; Array[a, 90]
  • PARI
    a(n) = sumdiv(20*n-16, d, (d%10) == 2); \\ Michel Marcus, Jul 26 2021

A384735 Numbers that are prime or end in a prime number (of any length).

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 15, 17, 19, 22, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 42, 43, 45, 47, 52, 53, 55, 57, 59, 61, 62, 63, 65, 67, 71, 72, 73, 75, 77, 79, 82, 83, 85, 87, 89, 92, 93, 95, 97, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 117
Offset: 1

Views

Author

Mohd Anwar Jamal Faiz, Jun 08 2025

Keywords

Comments

If k is a term, so is m*10^A055642(k) + k for all m > 0. - Michael S. Branicky, Jun 10 2025

Examples

			2, 3, 5, 7 and 11 are terms since they are prime.
15 is a term since it ends in the prime 5.
111 is a term since it ends in the prime 11.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(n) or (k-> k>1 and q(n mod 10^(k-1)))(length(n)):
    select(q, [$1..150])[];  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    q[n_] := AnyTrue[Range[1, IntegerLength[n]-1], PrimeQ[Mod[n, 10^#]] &]; Select[Range[120], PrimeQ[#] || q[#] &] (* Amiram Eldar, Jun 10 2025 *)
  • PARI
    isok(x) = my(y=x, nb=0); while(y>1, y/=10; nb++; if (isprime(x%(10^nb)), return(1))); \\ Michel Marcus, Jun 10 2025
  • Python
    from sympy import isprime
    def ok(n):
        s = str(n)
        return any(isprime(int(s[i:])) for i in range(len(s)))
    print([k for k in range(118) if ok(k)])
    
Previous Showing 21-26 of 26 results.