cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A017573 a(n) = (12n+4)^5.

Original entry on oeis.org

1024, 1048576, 17210368, 102400000, 380204032, 1073741824, 2535525376, 5277319168, 10000000000, 17623416832, 29316250624, 46525874176, 71008211968, 104857600000, 150536645632, 210906087424, 289254654976, 389328928768, 515363200000, 672109330432, 864866612224
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(12*n+4)^5: n in [0..20]]; // Vincenzo Librandi, Feb 27 2014
  • Maple
    A017573:=n->(12*n + 4)^5; seq(A017573(n), n=0..20); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[(12 n + 4)^5, {n, 0, 20}] (* Wesley Ivan Hurt, Feb 25 2014 *)
    (12*Range[0,20]+4)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1024,1048576,17210368,102400000,380204032,1073741824},20] (* Harvey P. Dale, Apr 24 2017 *)

Formula

a(n) = (12n + 4)^5 = 1024(3n + 1)^5 = A000584(A017569(n)). - Wesley Ivan Hurt, Feb 25 2014
Sum_{n>=0} 1/a(n) = Pi^5/(373248*sqrt(3)) + 121*zeta(5)/248832. - Amiram Eldar, Jul 14 2024

A101468 Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
...
Row sums give pentagonal pyramidal numbers A002411 T(n+0,0)= 1*n=A000027(n) T(n+0,1)= 4*n=A008586(n) T(n+1,2)= 7*n=A008589(n) T(n+2,3)=10*n=A008592(n) ...
so for example T(n+1,n-0)=6*n+2=A016933(n) T(n+1,n-1)=9*n+3=A017197(n) T(n+2,n-1)=12*n+4=A017569(n)
T(n,0)*T(n,1) = A033996(n) (8 times triangular numbers)
T(n,n)*T(n,0) = A000567(n+1) (Octagonal numbers) etc.

Examples

			Triangle begins:
1,
2,  4,
3,  8,  7,
4,  12, 14, 10,
5,  16, 21, 20, 13,
6,  20, 28, 30, 26, 16,
7,  24, 35, 40, 39, 32, 19,
8,  28, 42, 50, 52, 48, 38, 22,
9,  32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
		

Crossrefs

Cf. A095871 (product B*A), A002411.

Programs

  • Mathematica
    t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())

A278814 a(n) = ceiling(sqrt(3n+1)).

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 28 2016

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 100, LOOP(IF(n = -1, RETURN y), y := ADJOIN(CEILING(SQRT(1 + 3·n)), y), n := n - 1))
    
  • Maple
    seq(ceil(sqrt(3*k+1)), k=0..100); # Robert Israel, Nov 28 2016
  • Mathematica
    Table[Ceiling[Sqrt[3n+1]],{n,0,100}]
  • PARI
    a(n)=sqrtint(3*n)+1 \\ Charles R Greathouse IV, Nov 29 2016
    
  • Python
    from math import isqrt
    def A278814(n): return 1+isqrt(3*n) # Chai Wah Wu, Jul 28 2022

Formula

a(n) = ceiling(sqrt(3n+1)).
From Robert Israel, Nov 28 2016: (Start)
G.f.: (1-x)^(-1)*Sum_{k>=0} (x^(3*k^2)+x^(3*k^2+2*k+1)+x^(3*k^2+4*k+2)).
a(n+1) = a(n)+1 if n is in A032765, otherwise a(n+1) = a(n). (End)
Sum_{n>=0} (-1)^n/a(n) = log(2) (A002162). - Amiram Eldar, Jun 18 2025

A017575 a(n) = (12n+4)^7.

Original entry on oeis.org

16384, 268435456, 13492928512, 163840000000, 1028071702528, 4398046511104, 14645194571776, 40867559636992, 100000000000000, 221068140740608, 450766669594624, 860542568759296, 1555363874947072, 2684354560000000, 4453476124377088, 7140436495826944, 11112006825558016
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (12*n + 4)^7; Array[a, 20, 0] (* Amiram Eldar, Jul 14 2024 *)

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A001015(A017569(n)) = A017569(n)^7.
a(n) = 16384 * A016783(n).
Sum_{n>=0} 1/a(n) = 7*Pi^7/(403107840*sqrt(3)) + 1093*zeta(7)/35831808. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024

A017577 a(n) = (12n+4)^9.

Original entry on oeis.org

262144, 68719476736, 10578455953408, 262144000000000, 2779905883635712, 18014398509481984, 84590643846578176, 316478381828866048, 1000000000000000000, 2773078757450186752, 6930988311686938624, 15916595351771938816, 34068690316840665088, 68719476736000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (12*Range[0,30]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,68719476736,10578455953408,262144000000000,2779905883635712,18014398509481984,84590643846578176,316478381828866048,1000000000000000000,2773078757450186752},40] (* Harvey P. Dale, Sep 07 2018 *)

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A001017(A017569(n)) = A017569(n)^9.
a(n) = 262144 * A016785(n).
Sum_{n>=0} 1/a(n) = 809*Pi^9/(7313988648960*sqrt(3)) + 9841*zeta(9)/5159780352. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024

A017579 a(n) = (12n+4)^11.

Original entry on oeis.org

4194304, 17592186044416, 8293509467471872, 419430400000000000, 7516865509350965248, 73786976294838206464, 488595558857835544576, 2450808588882738675712, 10000000000000000000000, 34785499933455142617088, 106570876280498368282624, 294393347626373780340736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A008455(A017569(n)) = A017569(n)^11.
a(n) = 4194304 * A016787(n).
Sum_{n>=0} 1/a(n) = 1847*Pi^11/(2633035913625600*sqrt(3)) + 88573*zeta(11)/743008370688. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024

A360927 Expansion of the g.f. x*(1 + 3*x + 4*x^2 + 4*x^3)/((1 - x)^2*(1 + x)).

Original entry on oeis.org

0, 1, 4, 9, 16, 21, 28, 33, 40, 45, 52, 57, 64, 69, 76, 81, 88, 93, 100, 105, 112, 117, 124, 129, 136, 141, 148, 153, 160, 165, 172, 177, 184, 189, 196, 201, 208, 213, 220, 225, 232, 237, 244, 249, 256, 261, 268, 273, 280, 285, 292, 297, 304, 309, 316, 321, 328
Offset: 0

Views

Author

Stefano Spezia, Feb 25 2023

Keywords

Comments

The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the perimeter and the two diagonals of the square.

Examples

			Illustrations for n = 1..8:
      o          o o          o o o
                 o o          o o o
                              o o o
  a(1) = 1    a(2) = 4      a(3) = 9
   o o o o    o o o o o    o o o o o o
   o o o o    o o   o o    o o     o o
   o o o o    o   o   o    o   o o   o
   o o o o    o o   o o    o   o o   o
              o o o o o    o o     o o
                           o o o o o o
  a(4) = 16   a(5) = 21     a(6) = 28
   o o o o o o o       o o o o o o o o
   o o       o o       o o         o o
   o   o   o   o       o   o     o   o
   o     o     o       o     o o     o
   o   o   o   o       o     o o     o
   o o       o o       o   o     o   o
   o o o o o o o       o o         o o
                       o o o o o o o o
     a(7) = 33            a(8) = 40
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{0,1,4,9,16},57]

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4.
a(0) = 0, a(1) = 1, a(n) = 6*n - 8 for n even, and a(n) = 6*n - 9 for n odd.
E.g.f.: 4*(x + 2) + (6*x - 8)*cosh(x) + (6*x - 9)*sinh(x).
a(2*n) = A017569(n-1) = 4*A016777(n-1).
a(2*n+1) = A017629(n-1).
Previous Showing 11-17 of 17 results.