cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A018045 Powers of cube root of 24 rounded down.

Original entry on oeis.org

1, 2, 8, 24, 69, 199, 576, 1661, 4792, 13824, 39875, 115020, 331776, 957007, 2760487, 7962624, 22968182, 66251701, 191102976, 551236370, 1590040835, 4586471424, 13229672880, 38160980055, 110075314176, 317512149143, 915863521339, 2641807540224, 7620291579445
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k rounded down: A017979 (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), this sequence (k=24).

Programs

Extensions

More terms from Vincenzo Librandi, Jan 07 2014

A060969 Number of cubes of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8, 9, 11, 12, 15, 18, 22, 26, 31, 37, 46, 54, 66, 79, 97, 117, 141, 172, 209, 257, 309, 376, 457, 564, 687, 842, 1028, 1266, 1549, 1900, 2327, 2861, 3512, 4323, 5320, 6542, 8072, 9936, 12251, 15104, 18640, 23000, 28428
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10, the cubes of primes not exceeding 2^10 = 1024 are 8, 27, 125, 343, so a(10) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/3)//N ] ], {g, 0, 90} ]

Formula

a(3*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A017979(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A018048 Powers of fourth root of 2 rounded down.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 8, 9, 11, 13, 16, 19, 22, 26, 32, 38, 45, 53, 64, 76, 90, 107, 128, 152, 181, 215, 256, 304, 362, 430, 512, 608, 724, 861, 1024, 1217, 1448, 1722, 2048, 2435, 2896, 3444, 4096, 4870, 5792, 6888, 8192, 9741, 11585, 13777, 16384
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A018117 Powers of fifth root of 2 rounded down.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 12, 13, 16, 18, 21, 24, 27, 32, 36, 42, 48, 55, 64, 73, 84, 97, 111, 128, 147, 168, 194, 222, 256, 294, 337, 388, 445, 512, 588, 675, 776, 891, 1024, 1176, 1351, 1552, 1782, 2048, 2352, 2702, 3104, 3565, 4096
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[2^(n/5)]; Array[a, 100, 0] (* Amiram Eldar, Apr 04 2025 *)
  • PARI
    a(n) = sqrtnint(2^n, 5) \\ Amiram Eldar, Apr 04 2025

A301370 Maximum determinant of an n X n (0,1)-matrix that has exactly 2*n ones.

Original entry on oeis.org

0, 2, 2, 3, 4, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64
Offset: 2

Views

Author

Hugo Pfoertner, Mar 20 2018

Keywords

Comments

A proved upper bound is abs(a(n)) <= 6^(n/6), provided by Bruhn and Rautenbach. A conjectured sharper bound is abs(a(n)) <= 2^(n/3), provided by the same authors. For n=3*k, the bound is achieved by diagonally concatenating blocks ((1 1 0)(0 1 1)(1 0 1)).
The sharper bound is proved by Araujo, Balogh, and Wang in their article. See link. - Hugo Pfoertner, Nov 04 2020

Examples

			a(8) = 6 because no (0,1)-matrix with 2*8 ones with a greater determinant exists than
  ( 1 0 0 0 0 0 0 0 )
  ( 0 1 0 1 0 0 0 0 )
  ( 0 0 1 0 1 1 0 0 )
  ( 0 0 0 1 0 0 1 0 )
  ( 0 0 0 0 1 0 0 1 )
  ( 0 0 0 0 0 1 0 1 )
  ( 0 1 0 0 0 0 1 0 )
  ( 0 0 1 0 0 0 0 1 )
		

Crossrefs

Previous Showing 21-25 of 25 results.