cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 77 results. Next

A227092 Numbers whose base-7 sum of digits is 7.

Original entry on oeis.org

13, 19, 25, 31, 37, 43, 55, 61, 67, 73, 79, 85, 91, 103, 109, 115, 121, 127, 133, 151, 157, 163, 169, 175, 199, 205, 211, 217, 247, 253, 259, 295, 301, 349, 355, 361, 367, 373, 379, 385, 397, 403, 409, 415, 421, 427, 445, 451, 457, 463, 469, 493, 499, 505
Offset: 1

Views

Author

Tom Edgar, Sep 01 2013

Keywords

Comments

All of the entries are odd.
Subsequence of A016921. - Michel Marcus, Sep 03 2013
In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - M. F. Hasler, Dec 23 2016

Examples

			The 7-ary expansion of 13 is (1,6), which has sum of digits 7.
The 7-ary expansion of 103 is (2,0,5), which has sum of digits 7.
10 is not on the list since the 7-ary expansion of 10 is (1,3), which has sum of digits 4 not 7.
		

Crossrefs

Cf. A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).

Programs

  • Mathematica
    Select[Range[600],Total[IntegerDigits[#,7]]==7&] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    select( is(n)=sumdigits(n,7)==7, [1..999]) \\ M. F. Hasler, Dec 23 2016
    
  • Python
    agen = A226636gen(sod=7, base=7) # generator of terms using code in A226636
    print([next(agen) for n in range(1, 55)]) # Michael S. Branicky, Jul 10 2022
  • Sage
    [i for i in [0..1000] if sum(Integer(i).digits(base=7))==7]
    

A227095 Numbers whose base-8 sum of digits is 8.

Original entry on oeis.org

15, 22, 29, 36, 43, 50, 57, 71, 78, 85, 92, 99, 106, 113, 120, 134, 141, 148, 155, 162, 169, 176, 197, 204, 211, 218, 225, 232, 260, 267, 274, 281, 288, 323, 330, 337, 344, 386, 393, 400, 449, 456, 519, 526, 533, 540, 547, 554, 561, 568, 582, 589, 596, 603
Offset: 1

Views

Author

Tom Edgar, Sep 01 2013

Keywords

Comments

Subsequence of A016993. - Michel Marcus, Sep 03 2013
In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - M. F. Hasler, Dec 23 2016

Examples

			The 8-ary expansion of 15 is (1,7), which has sum of digits 8.
The 8-ary expansion of 78 is (1,1,6), which has sum of digits 8.
10 is not on the list since the 8-ary expansion of 10 is (1,2), which has sum of digits 3 not 8.
		

Crossrefs

Cf. A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).

Programs

  • Mathematica
    Select[Range@ 603, Total@ IntegerDigits[#, 8] == 8 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(n,8)==8, [1..999]) \\ M. F. Hasler, Dec 23 2016
    
  • Python
    agen = A226636gen(sod=8, base=8) # generator of terms using code in A226636
    print([next(agen) for n in range(1, 55)]) # Michael S. Branicky, Jul 10 2022
  • Sage
    [i for i in [0..1000] if sum(Integer(i).digits(base=8))==8]
    

A227238 Numbers whose base-9 sum of digits is 9.

Original entry on oeis.org

17, 25, 33, 41, 49, 57, 65, 73, 89, 97, 105, 113, 121, 129, 137, 145, 153, 169, 177, 185, 193, 201, 209, 217, 225, 249, 257, 265, 273, 281, 289, 297, 329, 337, 345, 353, 361, 369, 409, 417, 425, 433, 441, 489, 497, 505, 513, 569, 577, 585, 649, 657, 737, 745
Offset: 1

Views

Author

Tom Edgar, Sep 01 2013

Keywords

Comments

All of the entries are odd.
Subsequence of A017077. - Michel Marcus, Sep 02 2013
In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - M. F. Hasler, Dec 23 2016

Examples

			The 9-ary expansion of 17 is (1,8), which has sum of digits 9.
The 9-ary expansion of 169 is (2,0,7), which has sum of digits 9.
10 is not on the list since the 9-ary expansion of 10 is (1,1), which has sum of digits 2 not 9.
		

Crossrefs

Cf. A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).

Programs

  • Mathematica
    Select[Range@ 750, Total@ IntegerDigits[#, 9] == 9 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(n,9)==9, [1..999]) \\ M. F. Hasler, Dec 23 2016
    
  • Python
    agen = A226636gen(sod=9, base=9) # generator of terms using code in A226636
    print([next(agen) for n in range(1, 55)]) # Michael S. Branicky, Jul 10 2022
  • Sage
    [i for i in [0..1000] if sum(Integer(i).digits(base=9))==9]
    

A048639 Binary encoding of A006881, numbers with two distinct prime divisors.

Original entry on oeis.org

3, 5, 9, 6, 10, 17, 33, 18, 65, 12, 129, 34, 257, 66, 20, 130, 513, 1025, 36, 258, 2049, 24, 4097, 68, 8193, 514, 40, 1026, 16385, 132, 32769, 2050, 260, 65537, 72, 131073, 4098, 8194, 136, 262145, 16386, 524289, 48, 516, 1048577, 1028, 2097153, 32770
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Crossrefs

Permutation of A018900. Cf. A048640, A048623.

Programs

  • Maple
    encode_A006881 := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if((0 <> mobius(i)) and (4 = tau(i))) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end; # see A048623 for bef
  • Mathematica
    Total[2^PrimePi@ # &@ (Map[First, FactorInteger@ #] - 1)] & /@ Select[Range@ 160, SquareFreeQ@ # && PrimeOmega@ # == 2 &] (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquarefree(n) && bigomega(n)==2, f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k,1])-1)); print1(x, ", ");););} \\ Michel Marcus, Oct 01 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, primefactors
    def A048639(n):
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return sum(1<Chai Wah Wu, Feb 22 2025

Formula

a(n) = 2^(i-1) + 2^(j-1), where A006881(n) = p_i*p_j (p_i and p_j stand for the i-th and j-th primes respectively, where the first prime is 2).

A066884 Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
Offset: 1

Views

Author

Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 21 2002

Keywords

Comments

This is a permutation of the positive integers; the inverse permutation is A067587.

Examples

			Column: 1   2   3   4   5   6
-----------------------------
Row 1:| 1   2   4   8  16  32
Row 2:| 3   5   6   9  10  12
Row 3:| 7  11  13  14  19  21
Row 4:|15  23  27  29  30  39
Row 5:|31  47  55  59  61  62
Row 6:|63  95 111 119 123 125
		

Crossrefs

Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected columns: A000225 (1), A055010 (2).
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a

Extensions

Corrected and extended by Henry Bottomley, Jan 27 2002

A084468 Odd numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 19, 21, 25, 35, 37, 41, 49, 67, 69, 73, 81, 97, 131, 133, 137, 145, 161, 193, 259, 261, 265, 273, 289, 321, 385, 515, 517, 521, 529, 545, 577, 641, 769, 1027, 1029, 1033, 1041, 1057, 1089, 1153, 1281, 1537, 2051, 2053, 2057, 2065, 2081, 2113, 2177
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Crossrefs

Intersection of A005408 and A014311.
A084470(n) gives the position of a(n) in A084467(n).
Cf. A018900.

Programs

  • Mathematica
    Flatten[Table[2^m + 2^n + 1, {m, 2, 11}, {n, m - 1}]] (* Alonso del Arte, Jul 08 2011 *)
  • PARI
    for(m=2, 9, for(n=1, m-1, print1(2^m+2^n+1", "))) \\ Charles R Greathouse IV, Oct 04 2011
    
  • Python
    from math import isqrt, comb
    def A084468(n): return (1<<(m:=isqrt(n<<3)+1>>1)+1)+(1<<(n-comb(m,2)))|1 # Chai Wah Wu, Apr 07 2025

Formula

a(n) = 2*A018900(n) + 1 = A005408(A018900(n)).
Sum_{n>=1} 1/a(n) = 0.714295772926319061998427422200268976390844375453066534198594764887682975019... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

A140513 Repeat 2^n n times.

Original entry on oeis.org

2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
Offset: 0

Views

Author

Paul Curtz, Jul 01 2008

Keywords

Crossrefs

Programs

  • Haskell
    a140513 n k = a140513_tabl !! (n-1) !! (k-1)
    a140513_row n = a140513_tabl !! (n-1)
    a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2]
    a140513_list = concat a140513_tabl
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Mathematica
    t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *)
    Table[Table[2^n,n],{n,10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
  • Python
    from math import isqrt
    def A140513(n): return 1<<(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) # Chai Wah Wu, Nov 07 2024

Formula

a(n) = 2*A137688(n).
a(n) = A018900(n+1) - A059268(n). - Reinhard Zumkeller, Jun 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
T(n,k) = A173786(n-1,k-1) + A173787(n-1,k-1), 1 <= k <= n. (End)
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022

A239709 Primes of the form m = b^i + b^j - 1, where i > j > 0, b > 1.

Original entry on oeis.org

5, 11, 17, 19, 23, 29, 41, 47, 67, 71, 79, 83, 89, 107, 109, 131, 149, 181, 191, 239, 251, 257, 263, 269, 271, 349, 379, 383, 419, 461, 599, 701, 809, 811, 929, 971, 991, 1009, 1031, 1039, 1087, 1151, 1259, 1279, 1301, 1451, 1481, 1511, 1559, 1721, 1871, 1979, 2063, 2069, 2111, 2161, 2213, 2267, 2351, 2549, 2861, 2939, 2969, 3079, 3191, 3389
Offset: 1

Views

Author

Hieronymus Fischer, Mar 27 2014

Keywords

Comments

If m is a term, then there is a base b > 1 such that the base-b representation of m has digital sum = 1 + j*(b-1) == 1 (mod (b-1)).
The base b for which m = b^i + b^j - 1 is not uniquely determined. Example: 11 = 2^3+2^2-1 = 3^2 +3^1-1.
Numbers m which satisfy m = b^i + b^j - 1 with odd i and j and b == 2 (mod 3) are not terms. Example: 12189 = 23^3 + 23^1 - 1 is not a prime.

Examples

			a(1) = 5, since 5 = 2^2 + 2^1 - 1 is prime.
a(2) = 11, since 11 = 2^3 + 2^2 - 1 is prime.
a(6) = 29, since 29 = 3^3 + 3^1 - 1 is prime.
a(10^1) = 71.
a(10^2) = 13109.
a(10^3) = 9336079.
a(10^4) = 2569932329.
a(10^5) = 455578426189.
a(10^6) = 68543190483641.
		

Crossrefs

Programs

  • Smalltalk
    A239709
    "Answers the n-th term of A239709.
      Iterative calculation using A239709_termsLTn.
      Usage: n A239709
      Answer: a(n)"
      | n terms m |
      terms := SortedCollection new.
      n := self.
      m := (n prime // 2) squared.
      terms := m A239709_termsLTn.
      [terms size < n] whileTrue:
             [m := 2 * m.
             terms := m A239709_termsLTn].
      ^terms at: n
      "Remark: A last line of
      ^terms copyFrom: 1 to: n
      answers an array of the first n terms"
    [by_Hieronymus Fischer_, Apr 14 2014]
    -----------
    
  • Smalltalk
    A239709_termsLTn
      "Answers all the terms of A239709 which are < n.
      Direct processing by scanning the scanning the bases b in increasing order, up to b = sqrt(n), and calculating the numbers b^i + b^j - 1.
      Usage: n A239709_termsLTn
      Answer: #(5 11 17 19 23 ...) [terms < n]"
      | bmax p q n m terms a |
      terms := OrderedCollection new.
      n := self.
      bmax := n sqrtTruncated.
      2 to: bmax
         do:
             [:b |
             m := 1 + (n floorLog: b).
             p := b.
             2 to: m
                  by: 1
                  do:
                       [:i |
                       p := b * p.
                       q := b.
                       1 to: i - 1
                            by: 1
                            do:
                                [:j |
                                a := p + q - 1.
                                a < n ifTrue: [a isPrime ifTrue: [terms add: a]].
                                q := b * q]]].
      ^terms asSet asArray sorted
    [by_Hieronymus Fischer_, Apr 14 2014]
    -----------
    
  • Smalltalk
    A239709nTerms
      "Alternative version: Answers the first n terms of A239709. Direct calculation by scanning the numbers b^i + b^j - 1 in increasing order.
      Usage: n A239709
      Answer: a(n)"
      | a amax an b bmax k terms p q p_i q_j a_b amin bamin |
      terms := SortedCollection new.
      p_i := OrderedCollection new.
      q_j := OrderedCollection new.
      a_b := OrderedCollection new.
      p_i add: 1.
      q_j add: 1.
      a_b add: 1.
      k := 0.
      b := 2.
      bmax := b.
      p := b * b.
      q := b.
      a := p + q - 1.
      p_i add: p.
      q_j add: q.
      a_b add: a.
      amax := 2 * (b + 1) + a.
      an := 0.
      [(k < self and: [a < amax]) or: [a < an]] whileTrue:
             [[(k < self and: [a < amax]) or: [a < an]] whileTrue:
                       [[q < p and: [(k < self and: [a < amax]) or: [a < an]]] whileTrue:
                                [a isPrime2
                                     ifTrue:
                                          [(terms includes: a)
                                              ifFalse:
                                                   [k := k + 1.
                                                   terms add: a.
                                                   k >= self ifTrue: [an := terms at: self]]].
                                q := b * q.
                                a := p + q - 1].
                       p = q
                            ifTrue:
                                [p := b * p.
                                q := b.
                                a := p + q - 1].
                       p_i at: b put: p.
                       q_j at: b put: q.
                       a_b at: b put: a].
             amin := a.
             2 to: b - 1
                  do:
                       [:bb |
                       (a_b at: bb) < amin
                            ifTrue:
                                [amin := a_b at: bb.
                                bamin := bb]].
             b + 1 to: bmax
                  do:
                       [:bb |
                       (a_b at: bb) < amin
                            ifTrue:
                                [amin := a_b at: bb.
                                bamin := bb]].
             amin < (a min: amax)
                  ifTrue:
                       [b := bamin.
                       p := p_i at: b.
                       q := q_j at: b.
                       a := a_b at: b]
                  ifFalse:
                       [bmax := bmax + 1.
                       b := bmax.
                       p := b * b.
                       q := b.
                       a := p + q - 1.
                       p_i add: p.
                       q_j add: q.
                       a_b add: a.
                       amax := 2 * (b + 1) + a max: amax]].
      ^terms copyFrom: 1 to: self
    [by_Hieronymus Fischer_, Apr 20 2014]

A357773 Odd numbers with two zeros in their binary expansion.

Original entry on oeis.org

9, 19, 21, 25, 39, 43, 45, 51, 53, 57, 79, 87, 91, 93, 103, 107, 109, 115, 117, 121, 159, 175, 183, 187, 189, 207, 215, 219, 221, 231, 235, 237, 243, 245, 249, 319, 351, 367, 375, 379, 381, 415, 431, 439, 443, 445, 463, 471, 475, 477, 487, 491, 493, 499, 501
Offset: 1

Views

Author

Bernard Schott, Oct 12 2022

Keywords

Comments

A048490 \ {1} is a subsequence, since for m >= 1, A048490(m) = 8*2^m - 7 has 11..11001 with m starting 1 for binary expansion.
A153894 \ {4} is a subsequence, since for m >= 1, A153894(m) = 5*2^m - 1 has 10011..11 with m trailing 1 for binary expansion.
A220236 is a subsequence, since for m >= 1, A220236(m) = 2^(2*m + 2) - 2^(m + 1) - 2^m - 1 has 11..110011..11 with m starting 1 and m trailing 1 for binary expansion.
For k > 2, there are (k-1)*(k-2)/2 terms between 2^k and 2^(k+1), or equivalently (k-1)*(k-2)/2 terms with k+1 bits.
Binary expansion of a(n) is A357774(n).
{4*a(n), n>0} form a subsequence of A353654 (numbers with two trailing 0 bits and two other 0 bits).

Crossrefs

Odd numbers with k zeros in their binary expansion: A000225 (k=0), A190620 (k=1).
Subsequences: A048490 \ {1}, A153894 \ {4}, A220236.

Programs

  • Maple
    seq(seq(seq(2^n-1-2^i-2^j,j=i-1..1,-1),i=n-2..1,-1),n=4..10); # Robert Israel, Oct 13 2022
  • Mathematica
    Select[Range[1, 500, 2], DigitCount[#, 2, 0] == 2 &] (* Amiram Eldar, Oct 12 2022 *)
  • PARI
    isok(k) = (k%2) && (#binary(k) == hammingweight(k)+2); \\ Michel Marcus, Oct 13 2022
    
  • PARI
    list(lim)=my(v=List()); for(n=4,logint(lim\=1,2)+1, my(N=2^n-1); forstep(a=n-2,2,-1, my(A=N-1<lim, break(2)); listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Oct 21 2022
  • Python
    def a(n):
        m = 0
        while m*(m+1)*(m+2)//6 <= n: m += 1
        m -= 1 # m = A056556(n-1)
        k, r, j = m + 4, n - m*(m+1)*(m+2)//6, 0
        while r >= 0: r -= (m+1-j); j += 1
        j += 1
        return 2**k - 2**(k-j) - 2**(-r) - 1
    print([a(n) for n in range(60)]) # Michael S. Branicky, Oct 12 2022
    
  • Python
    # faster version for generating initial segment of sequence
    from itertools import combinations, count, islice
    def agen():
        for d in count(4):
            b, c = 2**d - 1, 2**(d-1)
            for i, j in combinations(range(1, d-1), 2):
                yield b - (c >> i) - (c >> j)
    print(list(islice(agen(), 60))) # Michael S. Branicky, Oct 13 2022
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A357773(n):
        a = (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2,3))+3
        b = isqrt((j:=comb(a-1,3)-n+1)<<3)+3>>1
        c = j-comb((r:=isqrt(w:=j<<1))+(w>r*(r+1)),2)
        return (1<Chai Wah Wu, Dec 17 2024
    

Formula

A023416(a(n)) = 2.
a((n-1)*(n-2)*(n-3)/6 - (i-1)*(i-2)/2 - (j-1)) = 2^n - 2^i - 2^j - 1 for 1 <= j < i <= n-2. - Robert Israel, Oct 13 2022

Extensions

a(11) and beyond from Michael S. Branicky, Oct 12 2022

A087323 a(n) = (n+1) * 2^n - 1.

Original entry on oeis.org

0, 3, 11, 31, 79, 191, 447, 1023, 2303, 5119, 11263, 24575, 53247, 114687, 245759, 524287, 1114111, 2359295, 4980735, 10485759, 22020095, 46137343, 96468991, 201326591, 419430399, 872415231, 1811939327, 3758096383, 7784628223, 16106127359, 33285996543, 68719476735
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2003

Keywords

Comments

Row sums of triangle in A018900 (without the initial 0). - Reinhard Zumkeller, Jun 24 2009

Crossrefs

Cf. A087322 (a triangle which includes this sequence as the leading diagonal but without the initial zero).

Programs

Formula

a(n) = (n + 1) * 2^n - 1 = 2^n * n + 2^n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). G.f.: x*(3-4*x)/((1-x)*(1-2*x)^2). - Colin Barker, Mar 23 2012
a(n) = A001787(n+1) - 1. - Omar E. Pol, Nov 09 2013

Extensions

Edited and extended by David Wasserman, May 06 2005
Formula promoted to definition and offset adjusted to 0 by Alonso del Arte, Jan 31 2014
Previous Showing 31-40 of 77 results. Next