cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A153601 Numbers representable as Phi(k,2), the k-th cyclotomic polynomial evaluated at 2, for some k>0.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 31, 43, 57, 73, 127, 151, 205, 241, 257, 331, 683, 2047, 2359, 2731, 3277, 4033, 5419, 8191, 43691, 61681, 65281, 65537, 80581, 131071, 174763, 261633, 262657, 524287, 599479, 838861, 1016801, 1082401, 1397419, 2796203
Offset: 1

Views

Author

Artur Jasinski, Dec 29 2008

Keywords

Comments

Odd numbers in A019320.
For primes in this sequence see: A153602.

Crossrefs

Extensions

Edited by T. D. Noe, Apr 27 2009

A292015 Primes of the form Phi(k, 2), where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 7, 5, 31, 3, 127, 17, 73, 11, 13, 8191, 43, 151, 257, 131071, 524287, 683, 241, 2731, 262657, 331, 2147483647, 65537, 599479, 43691, 174763, 61681, 5419, 2796203, 4432676798593, 15790321, 2305843009213693951, 715827883, 145295143558111, 10052678938039
Offset: 1

Views

Author

Robert Price, Sep 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Cyclotomic[k,2], {k, 0, 100}], PrimeQ[#] &]

Formula

a(n) = A019320(A072226(n)). - Max Alekseyev, Apr 25 2018

A368425 The corresponding greatest common divisors to A368424(n).

Original entry on oeis.org

5, 23, 19, 5, 47, 29, 71, 431, 97, 53, 167, 191, 505, 239, 263, 139, 149, 311, 163, 499, 173, 359, 383, 197, 409, 211, 643, 479, 503, 23, 269, 293, 599, 1201, 317, 647, 19, 719, 743, 379, 389, 839, 863, 887, 461, 11113, 983, 5, 509, 1031, 4297, 557, 1129
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Examples

			a(2) = 23 since gcd(A019320(A368424(2)), A019321(A368424(2))) = gcd(2047, 88573) = 23.
		

Crossrefs

Cf. A019320, A019321, A191609 (primes dividing some term of this sequence), A368424.

Programs

  • Maple
    subs(1=NULL, [seq(igcd(numtheory:-cyclotomic(n,2), numtheory:-cyclotomic(n,3)),n=1..1000)]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[GCD[Cyclotomic[Range[600], 2], Cyclotomic[Range[600], 3]],#>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,m=gcd(polcyclo(n,2),polcyclo(n,3));if(m>1,print1(m,", ")))

A241039 Cyclotomic(n,2048).

Original entry on oeis.org

1, 2047, 2049, 4196353, 4194305, 17600780175361, 4192257, 73823022692637345793, 17592186044417, 73786976303428141057, 17583600302081, 1298708349570020393652962442872833, 17592181850113
Offset: 0

Views

Author

T. D. Noe, Apr 15 2014

Keywords

Comments

Are all terms composite? At least the first 10000 terms are.

Crossrefs

Cf. A019320-A019331 (cyclotomic polynomials evaluated at 2..13).
Cf. A020500-A020513 (cyclotomic polynomials evaluated at 1, -2..-13, -1).
Cf. A117544 (least k such that cyclotomic(n,k) is prime).
Cf. A117545 (least k such that cyclotomic(k,n) is prime).

Programs

  • Mathematica
    Table[Cyclotomic[k, 2048], {k, 0, 20}]

A250198 Numbers k such that the right Aurifeuillian primitive part of 2^k+1 is prime.

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 30, 34, 38, 42, 54, 58, 66, 70, 90, 102, 110, 114, 126, 138, 170, 178, 242, 294, 314, 326, 350, 378, 462, 566, 646, 726, 758, 1150, 1242, 1302, 1482, 1558, 1638, 1710, 1770, 1970, 1994
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

All terms are congruent to 2 modulo 4.
Let Phi_n(x) denote the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nM(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, and this is Phi_{2n}(2).
Let M(n) = the Aurifeuillian M-part of 2^n+1, M(n) = 2^(n/2) + 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let M*(n) = GCD(M(n), J*(n)), this sequence lists all n such that M*(n) is prime.

Examples

			14 is in this sequence because the right Aurifeuillian primitive part of 2^14+1 is 29, which is prime.
26 is not in this sequence because the right Aurifeuillian primitive part of 2^26+1 is 8321, which equals 53 * 157 and is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 4] == 2 && PrimeQ[GCD[2^(#/2) + 2^((#+2)/4) + 1, Cyclotomic[2*#, 2]]] &]
  • PARI
    isok(n) = isprime(gcd(2^(n/2) + 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015

A250208 Ratio of the primitive part of 2^n-1 to the product of primitive prime factors of 2^n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Eric Chen, Mar 02 2015

Keywords

Comments

As with A178764, it can be shown that all terms are either 1 or prime.
a(2*3^n) = 3 (n>=1).
a(4*5^n) = 5 (n>=1).
a(3*7^n) = 7 (n>=1).
a(10*11^n) = 11 (n>=1).
a(12*13^n) = 13 (n>=1).
a(8*17^n) = 17 (n>=1).
a(18*19^n) = 19 (n>=1).
...
a(A014664(k)*prime(k)^n) = prime(k).
For other n (while Phi_n(2) is squarefree), a(n) = 1.
a(n) != 1 for n = {6, 18, 20, 21, 54, 100, 110, 136, 147, 155, 156, 162, ...}.
At least, a(A049093(n)) = 1. (In fact, since Phi_n(2) is not completely factored for n = 991, 1207, 1213, 1217, 1219, 1229, 1231, 1237, 1243, 1249, ..., so it is unknown whether they are squarefree or not, but it is likely that Phi_n(2) is squarefree for all n except 364 and 1755 (because it is likely 1093 and 3511 are the only two Wieferich primes), so a(991), a(1207), a(1213), ..., are likely to be 1.)

Examples

			a(11) = 1 since Phi_11(2) = (2^11-1)/(2-1) = 2047, and the primitive prime factors of 2^11-1 are 23 and 89, so a(11) = 2047/(23*89) = 1.
a(18) = 3 since Phi_18(2) = 2^6 - 2^3 + 1 = 57, and the only primitive prime factor of 2^18-1 is 19, so a(18) = 57/19 = 3.
		

Crossrefs

Programs

  • Mathematica
    a250208[n_] = If[n == 364, 1093, If[n == 1755, 3511, GCD[Cyclotomic[n, 2], n]]]; Table[a250208[n], {n, 0, 200}]
  • PARI
    a(n) = if (n==364, 1093, if (n==1755, 3511, gcd(polcyclo(n, 2), n)));
    
  • PARI
    isprimitive(p, n) = {for (r=1, n-1, if (((2^r-1) % p) == 0, return (0)); ); return (1); }
    ppf(n) = {my(pf = factor(2^n-1)[,1]); prod(k=1,#pf, if (isprimitive(pf[k], n), pf[k], 1));}
    a(n) = if (issquarefree(m=polcyclo(n,2)), gcd(m, n), m/ppf(n)); \\ Michel Marcus, Mar 06 2015

Formula

a(n) = A019320(n) / A064078(n) while Phi_n(2) is squarefree.
a(n) = GCD(Phi_n(2), n) while Phi_n(2) is squarefree.
Notice: a(364) = 1093, a(1755) = 3511. (See A001220.)

A317299 Semiprimes in A072226.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 22, 26, 33, 34, 38, 46, 49, 62, 65, 69, 77, 85, 86, 93, 122, 129, 133, 145, 158, 202, 254, 334, 382, 398, 447, 471, 579, 626, 694, 745, 1402, 1727, 1781, 2353, 3415, 3418, 3481, 3817, 5053, 5234, 5403, 7078, 7617, 8033, 10967, 11581
Offset: 1

Views

Author

Jianing Song, Jan 22 2019

Keywords

Comments

Semiprimes k such that A019320(k) is prime.
Numbers of the form p^2 where (2^(p^2) - 1)/(2^p - 1) is prime, or numbers of the form p*q where (2^(p*q) - 1)/((2^p - 1)*(2^q - 1)) is prime. Here p and q are necessarily primes.

Examples

			15 is a semiprime and Phi_15(2) = (2^15 - 1)/((2^3 - 1)*(2^5 - 1)) = 151 is prime, so 15 is a term. Here Phi_n is the n-th cyclotomic polynomial.
49 is a semiprime and Phi_49(2) = (2^49 - 1)/(2^7 - 1) = 4432676798593 is prime, so 49 is a term.
		

Crossrefs

Programs

  • PARI
    for(k=1, 1000, if(isprime(polcyclo(k, 2))&&bigomega(k)==2,print1(k, ", ")))
Previous Showing 31-37 of 37 results.