cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A298971 Number of compositions of n that are proper powers of Lyndon words.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 16, 1, 20, 9, 35, 1, 69, 1, 110, 21, 188, 1, 381, 7, 632, 59, 1184, 1, 2300, 1, 4115, 189, 7712, 25, 14939, 1, 27596, 633, 52517, 1, 101050, 1, 190748, 2247, 364724, 1, 703331, 19, 1342283, 7713, 2581430, 1, 4985609, 193
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2018

Keywords

Comments

a(n) is the number of compositions of n that are not Lyndon words but are of the form p * p * ... * p where * is concatenation and p is a Lyndon word.

Examples

			The a(12) = 16 compositions: 111111111111, 1111211112, 11131113, 112112112, 11221122, 114114, 12121212, 123123, 131313, 132132, 1515, 222222, 2424, 3333, 444, 66.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSum[d,MoebiusMu[d/#]*(2^#-1)&]/d,{d,Most@Divisors[n]}],{n,100}]
  • PARI
    a(n) = sumdiv(n, d, (2^d-1)*(eulerphi(n/d)-moebius(n/d))/n); \\ Michel Marcus, Jan 31 2018

Formula

a(n) = Sum_{d|n} (2^d-1)*(phi(n/d)-mu(n/d))/n.
a(n) = A008965(n) - A059966(n).

A318810 Number of necklace permutations of a multiset whose multiplicities are the prime indices of n > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 6, 1, 6, 1, 4, 3, 1, 1, 12, 4, 1, 16, 5, 1, 10, 1, 24, 3, 1, 5, 30, 1, 1, 4, 20, 1, 15, 1, 6, 30, 1, 1, 60, 10, 20, 4, 7, 1, 90, 7, 30, 5, 1, 1, 60, 1, 1, 54, 120, 10, 21, 1, 8, 5, 35, 1, 180, 1, 1, 70, 9, 14, 28, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A necklace is a finite sequence that is minimal among its cyclic permutations.
a(1) = 1 by convention.

Examples

			The a(21) = 3 necklace permutations of {1,1,1,1,2,2} are: (111122), (111212), (112112). Only the first two are Lyndon words, the third being periodic.
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Permutations[nrmptn[n]],neckQ]],{n,2,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
    a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 08 2018

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Dec 08 2018

Extensions

a(1) inserted by Andrew Howroyd, Dec 08 2018

A334273 Numbers k such that the k-th composition in standard order is both a reversed necklace and a co-necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 31, 32, 33, 34, 35, 36, 37, 39, 42, 43, 45, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 85, 87, 91, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143, 146, 147
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2020

Keywords

Comments

A necklace is a finite sequence of positive integers that is lexicographically less than or equal to any cyclic rotation. Co-necklaces are defined similarly, except with greater instead of less.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of all reversed necklace co-necklaces begins:
    0: ()            31: (1,1,1,1,1)       69: (4,2,1)
    1: (1)           32: (6)               71: (4,1,1,1)
    2: (2)           33: (5,1)             73: (3,3,1)
    3: (1,1)         34: (4,2)             74: (3,2,2)
    4: (3)           35: (4,1,1)           75: (3,2,1,1)
    5: (2,1)         36: (3,3)             77: (3,1,2,1)
    7: (1,1,1)       37: (3,2,1)           79: (3,1,1,1,1)
    8: (4)           39: (3,1,1,1)         85: (2,2,2,1)
    9: (3,1)         42: (2,2,2)           87: (2,2,1,1,1)
   10: (2,2)         43: (2,2,1,1)         91: (2,1,2,1,1)
   11: (2,1,1)       45: (2,1,2,1)         95: (2,1,1,1,1,1)
   15: (1,1,1,1)     47: (2,1,1,1,1)      127: (1,1,1,1,1,1,1)
   16: (5)           63: (1,1,1,1,1,1)    128: (8)
   17: (4,1)         64: (7)              129: (7,1)
   18: (3,2)         65: (6,1)            130: (6,2)
   19: (3,1,1)       66: (5,2)            131: (6,1,1)
   21: (2,2,1)       67: (5,1,1)          132: (5,3)
   23: (2,1,1,1)     68: (4,3)            133: (5,2,1)
		

Crossrefs

The aperiodic case is A334266.
Compositions of this type are counted by A334271.
Normal sequences of this type are counted by A334272.
Another ranking of the same compositions is A334274 (binary expansion).
Binary (or reversed binary) necklaces are counted by A000031.
Necklace compositions are counted by A008965.
All of the following pertain to compositions in standard order (A066099):
- Necklaces are A065609.
- Reversed necklaces are A333943.
- Co-necklaces are A333764.
- Reversed co-necklaces are A328595.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Aperiodic compositions are A328594.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    neckQ[q_]:=Length[q]==0||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    coneckQ[q_]:=Length[q]==0||Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,100],neckQ[Reverse[stc[#]]]&&coneckQ[stc[#]]&]

A334274 Numbers k such that the k-th composition in standard order is both a necklace and a reversed co-necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 200, 204, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2020

Keywords

Comments

Also numbers whose binary expansion is both a reversed necklace and a co-necklace.
A necklace is a finite sequence of positive integers that is lexicographically less than or equal to any cyclic rotation. Co-necklaces are defined similarly, except with greater instead of less.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of all reversed co-necklace necklaces begins:
    0: ()            31: (1,1,1,1,1)      100: (1,3,3)
    1: (1)           32: (6)              104: (1,2,4)
    2: (2)           36: (3,3)            106: (1,2,2,2)
    3: (1,1)         40: (2,4)            108: (1,2,1,3)
    4: (3)           42: (2,2,2)          112: (1,1,5)
    6: (1,2)         48: (1,5)            116: (1,1,2,3)
    7: (1,1,1)       52: (1,2,3)          118: (1,1,2,1,2)
    8: (4)           54: (1,2,1,2)        120: (1,1,1,4)
   10: (2,2)         56: (1,1,4)          122: (1,1,1,2,2)
   12: (1,3)         58: (1,1,2,2)        124: (1,1,1,1,3)
   14: (1,1,2)       60: (1,1,1,3)        126: (1,1,1,1,1,2)
   15: (1,1,1,1)     62: (1,1,1,1,2)      127: (1,1,1,1,1,1,1)
   16: (5)           63: (1,1,1,1,1,1)    128: (8)
   20: (2,3)         64: (7)              136: (4,4)
   24: (1,4)         72: (3,4)            144: (3,5)
   26: (1,2,2)       80: (2,5)            160: (2,6)
   28: (1,1,3)       84: (2,2,3)          164: (2,3,3)
   30: (1,1,1,2)     96: (1,6)            168: (2,2,4)
		

Crossrefs

The aperiodic case is A334267.
Compositions of this type are counted by A334271.
Normal sequences of this type are counted by A334272.
Binary (or reversed binary) necklaces are counted by A000031.
Necklace compositions are counted by A008965.
All of the following pertain to compositions in standard order (A066099):
- Necklaces are A065609.
- Reversed necklaces are A333943.
- Co-necklaces are A333764.
- Reversed co-necklaces are A328595.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Aperiodic compositions are A328594.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    neckQ[q_]:=Length[q]==0||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    coneckQ[q_]:=Length[q]==0||Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,100],neckQ[stc[#]]&&coneckQ[Reverse[stc[#]]]&]

A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 3, 6, 15, 30, 71, 145, 325, 680
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 15 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
         {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}
                    {{1},{1,1}}    {{1,1,2,3}}
                    {{1},{1,2}}    {{1,2,3,4}}
                    {{1},{1},{1}}  {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1,1,2}}
                                   {{1,1},{1,2}}
                                   {{1},{1,2,2}}
                                   {{1},{1,2,3}}
                                   {{1,2},{1,2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

For unrestricted multiplicities we have A034691.
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Other conditions: A035310, A063834, A330783, A356934, A356938, A356943.
Other types: A055932, A089259, A356945, A356955.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@normQ/@#&]],{n,0,5}]

A296976 List of normal Lyndon sequences ordered first by length and then reverse-lexicographically, where a finite sequence is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 1, 2, 1, 4, 3, 2, 1, 4, 2, 3, 1, 3, 4, 2, 1, 3, 3, 2, 1, 3, 2, 4, 1, 3, 2, 3, 1, 3, 2, 2, 1, 2, 4, 3, 1, 2, 3, 4, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2017

Keywords

Comments

Row n is formed by A060223(n) sequences and has length A296975(n).

Examples

			Triangle of normal Lyndon sequences begins:
1,
12,
132,123,122,112,
1432,1423,1342,1332,1324,1323,1322,1243,1234,1233,1232,1223,1222,1213,1132,1123,1122,1112.
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    normseqs[n_]:=Union@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Select[Reverse@normseqs@n,LyndonQ],{n,5}]

A318808 Number of Lyndon permutations of a multiset whose multiplicities are the prime indices of n > 1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 6, 0, 6, 0, 4, 2, 1, 0, 12, 3, 1, 14, 5, 0, 10, 0, 24, 3, 1, 5, 30, 0, 1, 3, 20, 0, 15, 0, 6, 30, 1, 0, 60, 8, 20, 4, 7, 0, 90, 7, 30, 4, 1, 0, 60, 0, 1, 51, 120, 9, 21, 0, 8, 5, 35, 0, 180, 0, 1, 70, 9, 14, 28, 0, 120
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The Lyndon product of two or more finite sequences is defined to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product.
a(1) = 1 by convention.

Examples

			The a(30) = 10 Lyndon permutations of {1,1,1,2,2,3}:
  (111223)
  (111232)
  (111322)
  (112123)
  (112132)
  (112213)
  (112312)
  (113122)
  (113212)
  (121213)
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Permutations[nrmptn[n]],LyndonQ]],{n,2,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, moebius(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
    a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 08 2018

Formula

a(p) = 0 for prime p. - Andrew Howroyd, Dec 08 2018

A329145 Number of non-necklace compositions of n.

Original entry on oeis.org

0, 0, 1, 3, 9, 19, 45, 93, 197, 405, 837, 1697, 3465, 7011, 14193, 28653, 57825, 116471, 234549, 471801, 948697, 1906407, 3829581, 7689357, 15435033, 30973005, 62137797, 124630149, 249922665, 501078345, 1004468157, 2013263853, 4034666121, 8084640465
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (21)  (31)   (32)    (42)
        (121)  (41)    (51)
        (211)  (131)   (141)
               (212)   (213)
               (221)   (231)
               (311)   (312)
               (1121)  (321)
               (1211)  (411)
               (2111)  (1131)
                       (1221)
                       (1311)
                       (2112)
                       (2121)
                       (2211)
                       (3111)
                       (11121)
                       (11211)
                       (12111)
                       (21111)
		

Crossrefs

Numbers whose prime signature is not a necklace are A329142.
Binary necklaces are A000031.
Necklace compositions are A008965.
Lyndon compositions are A059966.
Numbers whose reversed binary expansion is a necklace are A328595.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!neckQ[#]&]],{n,10}]

Formula

a(n) = 2^(n-1) - A008965(n).

A019537 Number of special orbits for dihedral group of degree n.

Original entry on oeis.org

1, 2, 4, 14, 61, 414, 3416, 34274, 394009, 5113712, 73758368, 1170495180, 20263806277, 380048113202, 7676106638884, 166114210737254, 3834434327929981, 94042629562443206, 2442147034770292496, 66942194906543381336, 1931543452346146410965, 58519191359170883258606
Offset: 1

Views

Author

Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)

Keywords

Comments

a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - Robert A. Russell, May 31 2018

Examples

			For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - _Robert A. Russell_, May 31 2018
		

Crossrefs

Cf. A019536.
Row sums of A273891.

Programs

  • Mathematica
    Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2],k] + StirlingS2[Ceiling[(n+1)/2],k]), {k, 1, n}], {n, 1, 40}] (* Robert A. Russell, May 31 2018 *)
  • PARI
    a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2))); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, May 31 2018
a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - Vaclav Kotesovec, Jul 21 2019

Extensions

More terms (using A273891) from Alois P. Heinz, Jun 02 2016

A296977 List of normal Lyndon sequences ordered first by length and then lexicographically, where a finite sequence is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 2, 4, 1, 3, 3, 2, 1, 3, 4, 2, 1, 4, 2, 3, 1, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2017

Keywords

Comments

Row n is formed by A060223(n) sequences and has length A296975(n).

Examples

			Triangle of normal Lyndon sequences begins:
1,
12,
112,122,123,132,
1112,1122,1123,1132,1213,1222,1223,1232,1233,1234,1243,1322,1323,1324,1332,1342,1423,1432.
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    normseqs[n_]:=Union@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Select[normseqs[n],LyndonQ],{n,5}]
Previous Showing 41-50 of 51 results. Next