cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 339 results. Next

A319990 a(n) = Product_{d|n, dA019565(d)^[0 == d mod 3].

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 6, 1, 1, 90, 1, 1, 6, 1, 1, 1260, 1, 1, 6, 1, 1, 3150, 1, 1, 84, 1, 1, 18900, 1, 1, 6, 1, 1, 1455300, 1, 1, 6, 1, 1, 9900, 1, 1, 17640, 1, 1, 242550, 1, 1, 6, 1, 1, 19209960, 1, 1, 6, 1, 1, 764032500, 1, 1, 9240, 1, 1, 2340, 1, 1, 6, 1, 1, 7283776500, 1, 1, 1260, 1, 1, 35100, 1, 1, 38808, 1, 1, 94594500, 1, 1, 6, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A293214, A319991, A319992, A320003, A320010 (rgs-transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[0 == d mod 3].
a(n) = A293214(n) / (A319991(n)*A319992(n)).
For all n >= 1:
A007814(a(n)) = A320003(n).
A195017(a(n)) = 0 mod 3.

A332824 a(n) = Product_{d|n} A019565(phi(d)), where phi is Euler totient function A000010.

Original entry on oeis.org

2, 4, 6, 12, 10, 36, 30, 60, 90, 100, 42, 540, 70, 900, 210, 420, 22, 8100, 66, 2100, 3150, 1764, 330, 18900, 550, 4900, 2970, 94500, 770, 44100, 2310, 4620, 6930, 484, 11550, 4252500, 130, 4356, 16170, 115500, 182, 9922500, 546, 291060, 242550, 108900, 2730, 1455300, 8190, 302500, 858, 1131900, 1430, 8820900, 19110
Offset: 1

Views

Author

Antti Karttunen, Feb 25 2020

Keywords

Crossrefs

Cf. A048675 (a left inverse).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A332824(n) = { my(m=1); fordiv(n,d,m *= A019565(eulerphi(d))); (m); };

Formula

a(n) = Product_{d|n} A332825(d).
a(n) = A318834(n) * A332825(n).
A048675(a(n)) = n.
A097248(a(n)) = A019565(n).

A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).

Original entry on oeis.org

1, 1456, 15480, 114660, 2244600, 3894768, 25108200, 27052704, 65021040, 112402080, 1973921400
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Comments

Numbers k such that their abundancy index [sigma(k)/k] is equal to A351557(k)/A351556(k).
Question: If the above ratio is neither 1 nor 2, must it then be > 2? Are all even terms abundant?
a(12) > 2281701376 if it exists.

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA351549(n) = { my(s=sigma(n), z=A019565(n)); (n*gcd(s,z))==(s*gcd(n,z)); };

A376406 a(0) = 1, and for n > 0, a(n) = A019565(Sum_{i=0..n-1} a(i)), where A019565 is the base-2 exp-function.

Original entry on oeis.org

1, 2, 6, 14, 330, 10166, 12075690, 1174153011328084322, 73582975079922326904310062621361286633125176265747127754
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2024

Keywords

Comments

a(9) has 272 digits and a(10) has 1523 digits.
The lexicographically earliest infinite sequence x for which A048675(x(n)) gives the partial sums of x (shifted right once). This follows because the "least k" condition in the alternative formula also ensures that each k is squarefree, as we have A097248(n) = A019565(A048675(n)) <= n for all n, with equivalence only when n is squarefree.
Compare also to A376408.

Examples

			Starting with a(0) = 1, we take partial sums of previous terms, and apply A019565 to get the next term, and in the rightmost column, we "unbox" that term by applying A048675 to get A376407(n), which thus gives the partial sums of a(0)..a(n-1):
a(0)                               = 1          -> 0
a(1) = A019565(1)                  = 2,         -> 1     = 1
a(2) = A019565(1+2)                = 6,         -> 3     = 1+2
a(3) = A019565(1+2+6)              = 14,        -> 9     = 1+2+6
a(4) = A019565(1+2+6+14)           = 330,       -> 23    = 1+2+6+14
a(5) = A019565(1+2+6+14+330)       = 10166,     -> 353   = 1+2+6+14+330
a(6) = A019565(1+2+6+14+330+10166) = 12075690,  -> 10519 = 1+2+6+14+330+10166
etc.
		

Crossrefs

Cf. A376407 (= A048675(a(n)), also gives the partial sums from its second term onward).
Subsequence of A005117.
Cf. also analogous sequences A002110 (for A276085), A093502 (for A056239), A376399 (for A276075).

Programs

  • PARI
    up_to = 12;
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A376406list(up_to) = { my(v=vector(up_to), s=1); v[1]=1; for(n=2,up_to,v[n] = A019565(s); s += v[n]); (v); };
    v376406 = A376406list(1+up_to);
    A376406(n) = v376406[1+n];

Formula

a(n) = A019565(A376407(n)) = A019565(Sum_{i=0..n-1} a(i)).
a(0) = 1, and for n > 0, a(n) is the least k such that A048675(k) = a(n-1) + A048675(a(n-1)), where A048675 is the base-2 log-function.
For n > 0, a(n) <= a(n-1) * A019565(a(n-1)).

A277810 Square array A(r,c) = A019565(A277820(r,c)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

2, 6, 3, 10, 15, 30, 210, 21, 14, 5, 22, 1155, 462, 35, 70, 858, 39, 910, 55, 330, 105, 1870, 3315, 72930, 5005, 2002, 33, 42, 9699690, 5187, 2926, 85, 714, 2145, 770, 7, 46, 111546435, 238602, 11305, 248710, 3927, 390, 77, 154, 4002, 87, 93763670, 21505, 152490, 440895, 3094, 91, 546, 231, 7130, 13485, 620310, 1078282205, 2306486, 9867, 114114, 17017, 170170, 1365, 2310
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

Permutation of squarefree numbers (A005117) after their initial term 1.

Examples

			The top left corner of the array:
    2,    6,     10,   210,      22,    858,      1870,    9699690
    3,   15,     21,  1155,      39,   3315,      5187,  111546435
   30,   14,    462,   910,   72930,   2926,    238602,   93763670
    5,   35,     55,  5005,      85,  11305,     21505, 1078282205
   70,  330,   2002,   714,  248710, 152490,   2306486,   60138078
  105,   33,   2145,  3927,  440895,   9867,   1870935,  691587897
   42,  770,    390,  3094,  114114, 520030,    162690,  581334754
    7,   77,     91, 17017,     133,  33649,     50141, 6685349671
  154,  546, 170170,   570,    6118, 254562, 357505330,   51269790
  231, 1365,   7293,  3135, 1312311, 983535,  11599797,  589602585
		

Crossrefs

Transpose: A277809.
The topmost row: A123098, the leftmost column: A277811.

Programs

Formula

A(r,c) = A019565(A277820(r,c)).

A277811 Column 1 of A277810: a(n) = A019565(A065621(n)).

Original entry on oeis.org

2, 3, 30, 5, 70, 105, 42, 7, 154, 231, 2310, 385, 110, 165, 66, 11, 286, 429, 4290, 715, 10010, 15015, 6006, 1001, 182, 273, 2730, 455, 130, 195, 78, 13, 442, 663, 6630, 1105, 15470, 23205, 9282, 1547, 34034, 51051, 510510, 85085, 24310, 36465, 14586, 2431, 374, 561, 5610, 935, 13090, 19635, 7854, 1309, 238, 357, 3570, 595, 170, 255, 102, 17
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Crossrefs

Column 1 of A277810.
Permutation of A030059.

Programs

Formula

a(n) = A019565(A065621(n)).

A286611 Numbers k for which A019565(k) <= A087207(k).

Original entry on oeis.org

17, 19, 34, 37, 41, 43, 47, 53, 59, 61, 65, 67, 69, 71, 73, 74, 79, 82, 83, 86, 89, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 129, 131, 134, 137, 139, 141, 142, 145, 146, 148, 149, 151, 157, 158, 163, 164, 166, 167, 173, 177, 178, 179, 181, 183, 191, 193, 194, 197, 199, 201, 202, 206, 211, 212
Offset: 1

Views

Author

Antti Karttunen, Jun 20 2017

Keywords

Comments

Any 2-cycle of A087207 and also any 2-cycle of A019565 (in which case A019565(x) = A087207(x) for both members of the cycle), if such cycles exist at all, must have the both of its members included in this sequence.

Crossrefs

Intersection with A286608 gives A286612.

Programs

A300830 a(n) = Product_{d|n} A019565(d)^(1-A008966(n/d)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 12, 1, 1, 1, 30, 1, 6, 1, 20, 1, 1, 1, 540, 2, 1, 12, 60, 1, 1, 1, 210, 1, 1, 1, 2520, 1, 1, 1, 1260, 1, 1, 1, 84, 20, 1, 1, 94500, 2, 6, 1, 140, 1, 540, 1, 18900, 1, 1, 1, 25200, 1, 1, 60, 2310, 1, 1, 1, 44, 1, 1, 1, 8731800, 1, 1, 12, 132, 1, 1, 1, 346500, 168, 1, 1, 39600, 1, 1, 1, 41580, 1, 1260
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2018

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A300830(n) = { my(m=1); fordiv(n,d,if(!moebius(n/d),m *= A019565(d))); m; };

Formula

a(n) = Product_{d|n} A019565(d)^(1-abs(A008683(n/d))).
a(n) = A293214(n) / (A300831(n)*A300832(n)).

A318469 Multiplicative with a(p^e) = A019565(A003714(e)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 10, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 7, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 20, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 14, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 20, 10, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 14, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Programs

  • PARI
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318469(n) = factorback(apply(e -> A019565(A003714(e)),factor(n)[,2]));

Formula

For all n >= 1, A001222(a(n)) = A318464(n).

A318835 Restricted growth sequence transform of A318834, product_{d|n, dA019565(A000010(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 8, 2, 10, 2, 11, 12, 13, 2, 14, 15, 16, 12, 14, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 9, 31, 32, 33, 2, 34, 24, 35, 36, 37, 2, 38, 2, 39, 40, 39, 41, 42, 2, 43, 44, 45, 2, 46, 2, 47, 48, 49, 50, 51, 2, 52, 53, 54, 2, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A051953(i) = A051953(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318834(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(eulerphi(d)))); m; };
    v318835 = rgs_transform(vector(up_to,n,A318834(n)));
    A318835(n) = v318835[n];
Previous Showing 31-40 of 339 results. Next