cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 339 results. Next

A329352 a(n) = Product_{d|n} A019565(d)^A010051(n/d).

Original entry on oeis.org

1, 2, 2, 3, 2, 18, 2, 5, 6, 30, 2, 75, 2, 90, 60, 7, 2, 210, 2, 105, 180, 126, 2, 245, 10, 210, 14, 525, 2, 66150, 2, 11, 252, 66, 300, 1155, 2, 198, 420, 385, 2, 173250, 2, 825, 2940, 990, 2, 847, 30, 3234, 132, 1155, 2, 15246, 420, 2695, 396, 2310, 2, 2223375, 2, 6930, 1540, 13, 700, 64350, 2, 195, 1980, 171990, 2, 5005, 2, 390, 32340, 975, 1260
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Examples

			The divisors of 30 are [1, 2, 3, 5, 6, 10, 15, 30], of which only d = 6, 10 and 15 are such that 30/d is a prime, thus a(n) = A019565(6) * A019565(10) * A019565(15) = 15 * 21 * 210 = 66150.
		

Crossrefs

Cf. A010051, A019565, A048675, A069359, A329353 (rgs-transform).
Cf. also A329350.
Differs from A300832 for the first time at n=30, where a(30) = 66150, while A300832(30) = 132300.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A329352(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A019565(d))); (m); };

Formula

a(n) = Product_{d|n} A019565(d)^A010051(n/d).
For all n, A048675(a(n)) = A069359(n).

A339812 Number of prime divisors of (A019565(n) - 1), counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 4, 2, 2, 2, 5, 2, 4, 1, 3, 2, 3, 3, 3, 1, 8, 1, 2, 1, 3, 2, 2, 2, 6, 2, 2, 1, 4, 1, 5, 2, 2, 3, 4, 1, 2, 3, 3, 1, 4, 1, 6, 1, 6, 3, 3, 2, 5, 1, 2, 1, 4, 2, 3, 1, 4, 2, 2, 1, 2, 2, 3, 2, 5, 2, 4, 2, 3, 1, 6, 2, 2, 3, 3, 2, 4, 1, 3, 1, 5, 2, 2, 2, 4, 4, 2, 3, 6, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339812(n) = bigomega(A019565(n)-1);

Formula

a(n) = A001222(A339809(n)) = A001222(A019565(n)-1).
a(n) = A001222(A339810(n)).

A339814 The exponent of the highest power of 2 dividing (A019565(2n) - 1).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 3, 1, 5, 1, 2, 2, 1, 7, 1, 2, 1, 6, 1, 1, 4, 1, 2, 1, 2, 1, 5, 3, 1, 2, 1, 4, 1, 2, 1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 1, 4, 1, 2, 1, 4, 1, 1, 5, 1, 2, 1, 2, 1, 4, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 3, 1, 4, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 6, 1, 2, 1, 2, 1, 4, 1, 1, 5, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Comments

The 2-adic valuation of A339809(2n).

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339814(n) = valuation((A019565(2*n)-1),2);

Formula

a(n) = A007814(A339809(2*n)) = A007814(A019565(2*n)-1).
a(n) = A007814(A003961(A019565(n))-1).

A339898 a(n) = A019565(2n)-1 mod A000265(phi(A019565(2n))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 2, 0, 2, 4, 4, 1, 5, 9, 14, 0, 2, 1, 2, 0, 2, 4, 5, 7, 8, 9, 14, 10, 32, 9, 29, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 4, 4, 3, 11, 4, 14, 1, 2, 0, 2, 7, 5, 3, 2, 0, 2, 4, 14, 6, 20, 34, 14, 0, 2, 4, 5, 24, 20, 16, 23, 28, 41, 9, 29, 112, 68, 24, 74, 3, 11, 19, 5, 27, 2, 58, 14, 16, 50, 84, 119, 388, 356
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A339973 (positions of zeros).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339898(n) = { my(x=A019565(2*n)); ((x-1)%A000265(eulerphi(x))); };

Formula

a(n) = A339809(2*n) modulo A339971(n), where A339971(n) = A053575(A019565(2n)).

A351091 a(n) = Product_{d|A000265(n)} A019565(A289813(d)); a product obtained from the 1-digits present in ternary expansions of the odd divisors of n.

Original entry on oeis.org

2, 2, 6, 2, 6, 6, 4, 2, 30, 6, 10, 6, 60, 4, 90, 2, 10, 30, 4, 6, 36, 10, 6, 6, 12, 60, 210, 4, 14, 90, 84, 2, 210, 10, 84, 30, 140, 4, 18900, 6, 210, 36, 140, 10, 3150, 6, 14, 6, 168, 12, 210, 60, 14, 210, 60, 4, 36, 14, 6, 90, 4, 84, 900, 2, 900, 210, 60, 10, 90, 84, 10, 30, 4, 140, 540, 4, 60, 18900, 4, 6, 2310
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Crossrefs

Cf. A000265, A019565, A289813, A351081, A351092, A351093 (rgs-transform).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); };
    A351091(n) = { my(m=1); fordiv(n>>valuation(n,2),d,m *= A019565(A289813(d))); (m); };

Formula

a(n) = A351081(A000265(n)).

A351092 a(n) = Product_{d|A000265(n)} A019565(A289814(d)); a product obtained from the 2-digits present in ternary expansions of the odd divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 6, 1, 6, 1, 5, 2, 15, 2, 10, 1, 30, 1, 1, 3, 2, 6, 1, 1, 6, 6, 36, 1, 1, 5, 1, 2, 2, 15, 3, 2, 30, 10, 10, 1, 15, 30, 90, 1, 30, 1, 28, 3, 35, 2, 14, 6, 21, 1, 105, 1, 28, 6, 7, 6, 210, 36, 42, 1, 35, 1, 3150, 5, 420, 1, 105, 2, 1, 2, 2, 15, 12, 3, 6, 2, 6, 30, 3, 10, 1, 10
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Crossrefs

Cf. A000265, A019565, A289814, A351082, A351091, A351094 (rgs-transform).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); };
    A351092(n) = { my(m=1); fordiv(n>>valuation(n,2),d,m *= A019565(A289814(d))); (m); };

Formula

a(n) = A351082(A000265(n)).

A351559 a(n) = A048675(gcd(sigma(n), A019565(n))).

Original entry on oeis.org

0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 3, 8, 9, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 0, 10, 1, 8, 5, 2, 1, 0, 1, 2, 3, 32, 1, 6, 1, 0, 9, 2, 1, 8, 33, 2, 3, 0, 0, 2, 3, 0, 1, 6, 3, 0, 1, 2, 3, 8, 1, 2, 33, 0, 1, 2, 65, 0, 1, 2, 3, 0, 1, 2, 1, 12, 1, 10, 5, 0, 16, 2, 3, 0, 1, 18, 7, 0, 1, 2, 9, 8, 1, 2, 7, 0, 1, 2, 35, 0, 65, 2, 33
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 103}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351559(n) = A048675(gcd(sigma(n), A019565(n)));

Formula

a(n) = A048675(A351557(n)) = A048675(gcd(sigma(n), A019565(n))).
a(n) = n AND A351560(n), where AND is bitwise-and, A004198.

A376408 a(0) = 1, and for n > 0, a(n) = a(n-1) * A019565(a(n-1)), where A019565 is the base-2 exp-function.

Original entry on oeis.org

1, 2, 6, 90, 353430, 274407373885179150, 2443417474326613595267894539584266773823049253134356678751627846400290750
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2024

Keywords

Comments

a(7) has 407 digits, and a(8) has 2804 digits.
Like A376406, this satisfies A048675(a(n)) = a(n-1) + A048675(a(n-1)), for all n >= 1, that is, applying A048675 to the terms gives the partial sums shifted right once, A376409. However, unlike A376406, this is not a subsequence of A005117: a(3) = 90 is the first term that is not squarefree. Neither can we say that this is the lexicographically largest of such sequences, as there are also infinite sequences that begin as 1, 2, 6, 120, 38, ... or as 1, 2, 6, 120, 2042040, ... that satisfy the same condition.

Crossrefs

Cf. A376409 (= A048675(a(n)), also partial sums from its second term onward).
Cf. also analogous sequences A002110 (for A276086) and A376400 (for A276076).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A376408(n) = if(!n,1,my(x=A376408(n-1)); x*A019565(x));

A103785 Primes of the form A019565(2^n-1-k)+A019565(k) with minimum k.

Original entry on oeis.org

3, 7, 31, 211, 2311, 15017, 85091, 1616621, 22309297, 3234846617, 200560490131, 3710369067407, 20283350901829, 872184088778017, 307444891294245707, 775932344695001107, 961380175077106319537, 19548063559901161830551
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

This sequence can also be defined as: The Primes of the form primorial P(n)/A019565(k)+A019565(k) with minimum k. Conjecture: sequence is defined for any n>=1.

Examples

			for n=1, A019565(2^1-1-0)+A019565(0)=2+1=3 is prime, so a(1)=3;
for n=6, A019565(2^6-1-1)+A019565(1)=15015+2=15017 is prime, so a(6)=15017;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^2048; npd = 1; n = 1; npd = npd*Prime[n]; While[npd < nmax, tn = 0; tt = 1; cp = npd/tt + tt; While[(IntegerQ[cp]) && (! (PrimeQ[cp])), tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; cp = npd/tt + tt]; Print[cp]; n = n + 1; npd = npd*Prime[n]]

A103787 a(n) = number of k's that make primorial P(n)/A019565(k)+A019565(k) prime, A019565(k)^2<=P(n).

Original entry on oeis.org

1, 2, 4, 8, 12, 21, 40, 70, 117, 263, 450, 703, 1385, 2423, 5501, 8617, 18249, 29352, 61970, 103568, 209309, 404977, 853279, 1609502, 3008915, 5342983, 10287184, 19087437, 38498011, 78520137, 145642314
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

If we remove the restriction A019565(k)^2<=P(n), every term gets doubled.
Number of distinct primes of the form d + P(n)/d, where P(n) is the n-th primorial A002110(n) and d is a divisor of P(n).

Examples

			P(1)=2, A019565(0)=1, 2/1+1=3 is prime, a(1)=1;
P(2)=6, A019565(0)=1, 6/1+1=7; A019565(1)=2, 6/2+2=5; so a(2)=2.
		

Crossrefs

Programs

  • Mathematica
    npd = 1; Do[npd = npd*Prime[n]; tn = 0; tt = 1; cp = npd/tt + tt; ct = 0; While[IntegerQ[cp], If[(cp >= (tt*2)) && PrimeQ[cp], ct = ct + 1]; tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; cp = npd/tt + tt]; Print[ct], {n, 1, 22}]
    Table[ps=Prime[Range[n]]; cnt=0; Do[b=IntegerDigits[i,2,n]; p=Times@@(ps^b) + Times@@(ps^(1-b)); If[PrimeQ[p], cnt++], {i,0,2^(n-1)-1}]; cnt, {n,22}]

Formula

a(n) = A088627(A002110(n)/2).

Extensions

a(28)-a(31) from James G. Merickel, Aug 07 2015
Previous Showing 41-50 of 339 results. Next