cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A280633 Decimal expansion of 18*sin(Pi/18).

Original entry on oeis.org

3, 1, 2, 5, 6, 6, 7, 1, 9, 8, 0, 0, 4, 7, 4, 6, 2, 7, 9, 3, 3, 0, 8, 9, 9, 2, 8, 1, 8, 4, 7, 6, 6, 6, 3, 2, 8, 0, 0, 6, 7, 6, 2, 1, 8, 9, 3, 1, 3, 2, 4, 8, 9, 7, 0, 2, 5, 2, 3, 4, 4, 8, 0, 6, 3, 7, 7, 1, 8, 4, 7, 9, 8, 5, 0, 2, 2, 6, 5, 2, 3, 7, 5, 8, 7, 2, 9, 9, 0, 3, 6, 8, 3, 3, 1, 9, 2, 3, 3, 2, 2, 1, 5, 2, 6
Offset: 1

Views

Author

Rick L. Shepherd, Jan 06 2017

Keywords

Comments

The ratio of the perimeter of a regular 9-gon (nonagon) to its diameter (largest diagonal).
Also least positive root of x^3 - 243x + 729.

Examples

			3.125667198004746279330899281847666328006762189313248970252344806377184798...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7),A280585 (n=8), A280725(n=11), A280819 (n=12).

Programs

  • Maple
    evalf(18*sin(Pi/18),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[18*Sin[Pi/18],10,120][[1]] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    18*sin(Pi/18)

Formula

A019978 Decimal expansion of tangent of 80 degrees.

Original entry on oeis.org

5, 6, 7, 1, 2, 8, 1, 8, 1, 9, 6, 1, 7, 7, 0, 9, 5, 3, 0, 9, 9, 4, 4, 1, 8, 4, 3, 9, 8, 6, 3, 9, 6, 4, 4, 2, 1, 6, 2, 5, 3, 7, 8, 2, 6, 0, 6, 8, 9, 7, 5, 0, 3, 0, 3, 2, 1, 5, 9, 0, 9, 9, 8, 8, 8, 7, 5, 2, 4, 3, 4, 1, 6, 6, 8, 0, 9, 4, 4, 9, 9, 4, 1, 7, 9, 8, 5, 9, 8, 2, 6, 9, 8, 1, 7, 2, 8, 1, 7
Offset: 1

Views

Author

Keywords

Examples

			tan(4*Pi/9) = 5.67128183...
		

Programs

  • Mathematica
    RealDigits[Tan[80 Degree],10,120][[1]] (* Harvey P. Dale, Jan 04 2013 *)

Formula

Largest positive of the 6 real-valued roots of x^6-33*x^4+27*x^2-3=0. - R. J. Mathar, Aug 31 2025
Equals A019889/A019819. - R. J. Mathar, Aug 31 2025

A133749 Decimal expansion of -2*cos((2*Pi)/9) + 2*sqrt(3)*sin((2*Pi)/9).

Original entry on oeis.org

6, 9, 4, 5, 9, 2, 7, 1, 0, 6, 6, 7, 7, 2, 1, 3, 9, 5, 4, 0, 6, 8, 6, 6, 5, 0, 7, 0, 7, 7, 2, 5, 9, 1, 8, 4, 0, 0, 1, 5, 0, 2, 7, 0, 8, 7, 3, 6, 2, 7, 7, 5, 4, 8, 9, 4, 4, 9, 6, 5, 5, 1, 2, 5, 2, 8, 2, 6, 3, 2, 8, 8, 5, 5, 6, 0, 5, 8, 9, 4, 1, 6, 8, 6, 0, 6, 6, 4, 5, 2, 6, 2, 9, 5, 9, 8, 2, 9, 6, 0, 4, 7, 8, 3, 6
Offset: 0

Views

Author

Eric W. Weisstein, Sep 23 2007

Keywords

Comments

The distance between the centers of 2 unit-radius spheres such that the volume of the overlap is equal to half the volume of each sphere. - Amiram Eldar, May 31 2021

Examples

			0.69459271066772139540...
		

Crossrefs

Cf. A019819.

Programs

  • Mathematica
    RealDigits[-2*Cos[(2*Pi)/9] + 2*Sqrt[3]*Sin[(2*Pi)/9], 10, 100][[1]] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    4*sin(Pi/18) \\ Gleb Koloskov, Feb 28 2021

Formula

Equals 4*sin(Pi/18) = 4*A019819. - Gleb Koloskov, Feb 28 2021

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Equals A232738/(2*A343056). - R. J. Mathar, Sep 05 2025

A359837 Decimal expansion of the unsigned ratio of similitude between an equilateral reference triangle and its first Morley triangle.

Original entry on oeis.org

1, 8, 4, 7, 9, 2, 5, 3, 0, 9, 0, 4, 0, 9, 5, 3, 7, 2, 7, 0, 1, 3, 5, 2, 0, 4, 7, 5, 7, 2, 2, 0, 3, 7, 5, 5, 8, 7, 0, 9, 1, 3, 5, 5, 9, 7, 9, 2, 6, 5, 1, 7, 1, 7, 2, 3, 5, 6, 0, 7, 8, 1, 3, 0, 2, 0, 1, 7, 9, 1, 3, 3, 4, 3, 5, 7, 1, 9, 9, 7, 6, 2, 1, 3, 4, 2, 5, 3, 2, 7
Offset: 0

Views

Author

Frank M Jackson, Jan 14 2023

Keywords

Comments

The first Morley triangle of any reference triangle is always equilateral. Therefore a reference equilateral triangle and its first Morley triangle will be in a homothetic relationship. This sequence is the real terms of a constant that is the ratio of similitude of the homothety. The constant is negative.
If an equilateral triangle has a side a, a circumradius R and a first Morley triangle with side a', then a = R*sqrt(3) and a' = 8*R*(sin(Pi/9))^3, so the ratio of similitude between the two triangles is a'/a = (8/sqrt(3)) * (sin(Pi/9))^3. - Bernard Schott, Feb 06 2023

Examples

			0.1847925309040953727013520475722037558709135597926517172356...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sin[Pi/18]/Cos[Pi/9], 10, 100][[1]]
    N[Solve[x^3 + 3*x^2 - 6*x + 1 == 0, {x}][[2]], 90]
  • PARI
    sin(Pi/18)/cos(Pi/9) \\ Michel Marcus, Jan 15 2023

Formula

Equals sin(Pi/18)/cos(Pi/9).
A root of x^3+3*x^2-6*x+1.
Equals A019819/A019879. - Michel Marcus, Jan 15 2023
Equals 8 * A020760 * A019829^3. - Bernard Schott, Feb 06 2023

A383859 Central angle of the solution of the Tammes problem for 7 points on the sphere (in radians).

Original entry on oeis.org

1, 3, 5, 9, 0, 7, 9, 8, 9, 7, 6, 3, 2, 6, 6, 0, 1, 4, 1, 8, 8, 5, 0, 0, 2, 8, 8, 1, 6, 4, 7, 3, 3, 2, 7, 5, 3, 7, 8, 3, 0, 2, 1, 4, 5, 9, 8, 6, 1, 2, 8, 2, 4, 9, 1, 3, 2, 6, 2, 8, 0, 7, 8, 3, 7, 1, 5, 9, 7, 3, 9, 8, 1, 6, 5, 8, 7, 6, 9, 7, 2, 4, 2, 6
Offset: 1

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			1.3590798976326601418850028816473327537..
		

Crossrefs

Cf. A019819, A019669 (N=6), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14), A383861 (N=24).

Programs

  • Maple
    cos(4*Pi/9) ; %/(1-%) ; arccos(%) ; evalf(%,120) ;

Formula

cos( this ) = cos phi/(1- cos phi) where cos(phi)=A019819.
Previous Showing 11-16 of 16 results.