A320386 a(n) is the smallest positive integer such that the binary representation of n*a(n) is a "binary square" (i.e., a term of A020330).
3, 5, 1, 9, 2, 6, 9, 17, 4, 1, 17, 3, 17, 17, 1, 33, 8, 2, 33, 33, 3, 24, 33, 22, 33, 33, 2, 33, 33, 22, 33, 65, 16, 4, 65, 1, 65, 65, 22, 52, 65, 22, 65, 12, 1, 65, 65, 11, 65, 52, 3, 40, 65, 1, 12, 65, 11, 65, 65, 11, 65, 65, 1, 129, 32, 8, 129, 2, 11, 39
Offset: 1
Examples
a(5) = 2 because 5 is not a binary square, but 5*2 = 10 is (its binary representation is 1010).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..8191
Crossrefs
Cf. A020330.
Programs
-
Maple
a:= proc(n) local k; for k while not (s-> (l-> l::even and s[1..l/2]=s[l/2+1..l])(length(s)))( convert(convert(k*n, binary), string)) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Oct 12 2018
-
PARI
is(n) = my(L=#binary(n)\2); n>>L==bitand(n,2^L-1); \\ A020330 a(n) = my(k=1); while (!is(k*n), k++); k; \\ Michel Marcus, Oct 12 2018
Comments