A291880
Numbers n such that phi(n) - 1 | sigma(n).
Original entry on oeis.org
3, 4, 5, 6, 8, 10, 20, 22, 40, 76, 80, 108, 160, 204, 320, 640, 1072, 1280, 2560, 4192, 5120, 10240, 20480, 40960, 49344, 81920, 163840, 327680, 655360, 1310720, 2621440, 4197376, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 268460032, 335544320, 671088640, 1073790976, 1342177280, 2684354560, 5368709120
Offset: 1
sigma(1072) = 2108, phi(1072) = 528 and 2108/(528 - 1) = 4.
-
with(numtheory): P:=proc(q) local n; for n from 3 to q do
if type(sigma(n)/(phi(n)-1),integer) then print(n); fi; od; end: P(10^7);
-
Select[Range[3, 10^6], Divisible[DivisorSigma[1, #], EulerPhi[#] - 1] &] (* Michael De Vlieger, Sep 06 2017 *)
-
isok(n) = denominator(sigma(n)/(eulerphi(n)-1)) == 1; \\ Michel Marcus, Sep 06 2017
A320227
Assuming the truth of the Collatz conjecture, let T(n,i), i = 1..k be the initial k elements of the Collatz trajectory of n, up to when the first 1 appears, but excluding the 1. a(n) is the number of ordered pairs T(n,i) < T(n,j) such that gcd(T(n,i), T(n,j)) = 1.
Original entry on oeis.org
0, 0, 10, 0, 4, 11, 58, 0, 84, 4, 40, 12, 12, 62, 47, 0, 25, 89, 89, 4, 6, 43, 36, 13, 117, 13, 3395, 66, 66, 49, 3064, 0, 148, 27, 21, 94, 94, 94, 286, 4, 3246, 6, 184, 46, 42, 39, 2924, 14, 122, 122, 120, 14, 14, 3435, 3374, 70, 231, 70, 247, 51, 63, 3101
Offset: 1
a(3) = 10 because the Collatz trajectory T(3,i) of 3 up to the number 1 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 and gcd(T(i), T(j)) = 1 for the 10 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 8) and (5, 16). 28
In the general case, a(n) = 10 for n in the set {3} union {341, 682, 1364, 2728, ...,((4^5 - 1)/3)*2^k, ...} with k = 0, 1, 2, ...
a(6) = 11 because the Collatz trajectory T(6,i) of 6 up to the number 1 is 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 and gcd(T(i), T(j)) = 1 for the 11 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 6), (5, 8) and (5, 16).
-
nn:=1000:
for n from 1 to 200 do:
m:=n:lst:={}:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
lst:=lst union {m}:m:=m/2:
else
lst:=lst union {m}:m:=3*m+1:
fi:
od:
n0:=nops(lst):it:=0:
for j from 1 to n0-1 do:
for k from j+1 to n0 do:
if gcd(lst[j],lst[k])=1
then
it:=it+1:
else fi:
od:
od:
printf(`%d, `,it):
od:
A323097
Numbers m such that all elements of the Collatz trajectory occur in the divisors of m.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 1344, 2048, 2560, 2688, 4096, 5120, 5376, 8192, 10240, 10752, 16384, 20480, 21504, 21760, 32768, 40960, 43008, 43520, 65536, 81920, 86016, 87040, 131072, 163840, 172032, 174080, 262144, 327680
Offset: 1
1344 is in the sequence because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 64, 84, 96, 112, 168, 192, 224, 336, 448, 672, 1344} contains the set of the elements of the Collatz trajectory 1344 -> 672 -> 336 -> 168 -> 84 -> 42 -> 21 -> 64 -> 32 -> 16 -> 8 -> 4 -> 2 -> 1
-
with(numtheory):nn:=250000:
for n from 1 to nn do:
m:=n:it:=0:lst:={n}:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
m:=m/2:
else
m:=3*m+1:
fi:
it:=it+1:lst:=lst union {m}:
od:
x:=divisors(n):n0:=nops(x):lst1:={op(x), x[n0]}:
lst2:=lst intersect lst1:n1:=nops(lst2):
if lst2=lst
then
printf(`%d, `,n):
else fi:
od:
-
aQ[n_] := n == LCM @@ NestWhileList[If[OddQ[#], 3 # + 1, #/2] &, n, # > 1 &]; Select[Range[330000], aQ] (* Amiram Eldar, Aug 31 2019 *)
A344109
a(n) = (5*2^n + 7*(-1)^n)/3.
Original entry on oeis.org
4, 1, 9, 11, 29, 51, 109, 211, 429, 851, 1709, 3411, 6829, 13651, 27309, 54611, 109229, 218451, 436909, 873811, 1747629, 3495251, 6990509, 13981011, 27962029, 55924051, 111848109, 223696211, 447392429, 894784851, 1789569709, 3579139411, 7158278829, 14316557651, 28633115309, 57266230611, 114532461229, 229064922451
Offset: 0
- Élis Gardel da Costa Mesquita, Eudes Antonio Costa, Paula M. M. C. Catarino, and Francisco R. V. Alves, Jacobsthal-Mulatu Numbers, Latin Amer. J. Math. (2025) Vol. 4, No. 1, 23-45. See pp. 24, 26, 43.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
-
LinearRecurrence[{1,2}, {4,1}, 28] (* Amiram Eldar, May 10 2021 *)
A352692
a(n) + a(n+1) = 2^n for n >= 0 with a(0) = 4.
Original entry on oeis.org
4, -3, 5, -1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119, 22906492249
Offset: 0
-
a := proc(n) option remember; ifelse(n = 0, 4, 2^(n-1) - a(n-1)) end: # Peter Luschny, Mar 29 2022
A352691 := proc(n)
(11*(-1)^n + 2^n)/3
end proc: # R. J. Mathar, Apr 26 2022
-
LinearRecurrence[{1, 2}, {4, -3}, 40] (* Amiram Eldar, Mar 29 2022 *)
-
a(n) = (11*(-1)^n + 2^n)/3; \\ Thomas Scheuerle, Mar 29 2022
Warning: The DATA is correct, but there may be errors in the COMMENTS, which should be rechecked. - Editors of OEIS, Apr 26 2022
Comments