cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A235362 Decimal expansion of the cube root of 2 divided by 2.

Original entry on oeis.org

6, 2, 9, 9, 6, 0, 5, 2, 4, 9, 4, 7, 4, 3, 6, 5, 8, 2, 3, 8, 3, 6, 0, 5, 3, 0, 3, 6, 3, 9, 1, 1, 4, 1, 7, 5, 2, 8, 5, 1, 2, 5, 7, 3, 2, 3, 5, 0, 7, 5, 3, 9, 9, 0, 0, 4, 0, 9, 8, 7, 5, 5, 6, 0, 7, 7, 6, 4, 9, 8, 3, 8, 2, 5, 6, 9, 7, 9, 7, 4, 1, 8, 6, 4, 6, 9, 8, 2, 8, 1, 2, 1, 8, 1, 2, 7
Offset: 0

Views

Author

Alonso del Arte, Jan 07 2014

Keywords

Comments

Also reciprocal of the real cubic root of 4 and negated real part of either complex cubic root of 2.

Examples

			0.6299605249474365823836053...
		

Crossrefs

Programs

  • Maple
    Digits := 100 ; evalf(1/2^(2/3)) ; # R. J. Mathar, Jan 16 2023
  • Mathematica
    RealDigits[1/2^(2/3), 10, 128][[1]]
  • PARI
    sqrtn(1/4,3) \\ Charles R Greathouse IV, Apr 14 2014

Formula

2^(1/3)/2 = 1/2^(2/3) = 1/4^(1/3).
(-2^(1/3)/2 + sqrt(-3)/4^(1/3))^3 = 2.
Equals 1/A005480 = A002580 /2 . - Wolfdieter Lang, Jan 02 2023

A270714 Decimal expansion of (1/2)^(1/3).

Original entry on oeis.org

7, 9, 3, 7, 0, 0, 5, 2, 5, 9, 8, 4, 0, 9, 9, 7, 3, 7, 3, 7, 5, 8, 5, 2, 8, 1, 9, 6, 3, 6, 1, 5, 4, 1, 3, 0, 1, 9, 5, 7, 4, 6, 6, 6, 3, 9, 4, 9, 9, 2, 6, 5, 0, 4, 9, 0, 4, 1, 4, 2, 8, 8, 0, 9, 1, 2, 6, 0, 8, 2, 5, 2, 8, 1, 2, 1, 0, 9, 5, 8, 6, 6, 3, 6, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Let c = (1/2)^(1/3). A sphere of radius c*r has half the volume of a sphere of radius r. - Rick L. Shepherd, Aug 12 2016
Let c = (1/2)^(1/3). The relative maximum of xy(x+y)=1 is (c,-1/c^2). - Clark Kimberling, Oct 05 2020

Examples

			0.79370052598409973737585281963615413019574666394992650490414288091260825...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/2)^(1/3), 10, 200][[1]]
  • PARI
    (1/2)^(1/3) \\ Altug Alkan, Mar 22 2016

Formula

Equals 1/A002580 = A002580*A235362 = A005480*A020761. [corrected and expanded by Rick L. Shepherd, Aug 12 2016]
Equals Product_{k>=1} (1 + (-1)^k/(3*k+1)). - Amiram Eldar, Aug 10 2020

A281065 Decimal expansion of the greatest minimum separation between ten points in a unit square.

Original entry on oeis.org

4, 2, 1, 2, 7, 9, 5, 4, 3, 9, 8, 3, 9, 0, 3, 4, 3, 2, 7, 6, 8, 8, 2, 1, 7, 6, 0, 6, 5, 0, 2, 9, 8, 0, 9, 1, 6, 1, 0, 3, 6, 7, 2, 1, 4, 0, 7, 2, 6, 1, 2, 2, 3, 2, 1, 6, 5, 4, 3, 7, 5, 4, 5, 4, 0, 6, 5, 1, 7, 2, 9, 3, 9, 2, 2, 4, 3, 7, 7, 9, 1, 5, 3, 6, 3, 2, 9, 0, 6, 8, 8, 4, 7, 1, 9, 2, 4, 6, 2, 4, 3, 9
Offset: 0

Views

Author

Jeremy Tan, Jan 14 2017

Keywords

Comments

The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6 (A381485)
7 ... 4 - 2*sqrt(3) (A379338)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...

Examples

			0.421279543983903432768821760650298...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Cf. A281115 (10 points in unit circle), A000007, A002193, A010503, A020761, A101263, A120683, A379338, A381485.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^Range[18, 0, -1].{1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200}, {x, 2/5}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    my(p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200])); polrootsreal(p)[1]

Formula

d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).

A069181 Decimal expansion of 1/1024.

Original entry on oeis.org

0, 0, 0, 9, 7, 6, 5, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2002

Keywords

Crossrefs

Cf. A021516 (1/512), A021260 (1/256), A021132 (1/128), A021068 (1/64), A021036 (1/32), A021020 (1/16), A020821 (1/8), A020773 (1/4), A020761 (1/2).

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[1/1024,10,120][[1]]] (* or *) PadRight[ {0,0,0,9,7,6,5,6,2,5},120,{0}] (* Harvey P. Dale, Jan 26 2019 *)

A214174 Decimal expansion of Integral_{x=0..oo} x/cosh(Pi*x) dx.

Original entry on oeis.org

1, 8, 5, 6, 1, 3, 4, 3, 6, 3, 5, 5, 3, 8, 6, 0, 8, 1, 4, 7, 6, 9, 8, 1, 9, 9, 0, 1, 9, 9, 7, 1, 9, 9, 8, 5, 6, 0, 9, 4, 3, 0, 4, 5, 9, 1, 3, 1, 2, 9, 3, 2, 0, 5, 4, 0, 7, 6, 0, 1, 9, 1, 9, 3, 9, 1, 1, 2, 6, 1, 2, 1, 2, 8, 7, 5, 7, 7, 7, 5, 1, 7, 9, 1, 7, 2, 7
Offset: 0

Views

Author

Bruno Berselli, Mar 20 2013

Keywords

Comments

This sequence is between A020761 [Integral_{x=0..oo} x^0/cosh(Pi*x) dx] and A020821 [Integral_{x=0..oo} x^2/cosh(Pi*x) dx].

Examples

			0.1856134363553860814769819901997199856094304591312932054076019...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R)/Pi(R)^2; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[2 Catalan/Pi^2, 10, 90][[1]]
  • PARI
    default(realprecision, 100); 2*Catalan/Pi^2 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals A060294*A143233 = 2*C/Pi^2, where C is Catalan's constant (A006752).

A358981 Decimal expansion of Pi/3 - sqrt(3)/4.

Original entry on oeis.org

6, 1, 4, 1, 8, 4, 8, 4, 9, 3, 0, 4, 3, 7, 8, 4, 2, 2, 7, 7, 2, 3, 5, 2, 8, 7, 5, 7, 1, 6, 6, 9, 9, 5, 3, 6, 3, 3, 0, 0, 2, 1, 8, 1, 9, 6, 7, 2, 4, 4, 0, 1, 1, 6, 6, 4, 4, 3, 6, 3, 1, 1, 9, 2, 3, 9, 6, 2, 2, 2, 1, 4, 5, 3, 4, 8, 6, 9, 6, 5, 6, 9, 3, 9, 0, 5, 8, 3, 9, 5, 0, 9, 1, 3, 9, 3, 5, 4, 5, 4
Offset: 0

Views

Author

Michal Paulovic, Dec 08 2022

Keywords

Comments

The constant is the area of a circular segment bounded by an arc of 2*Pi/3 radians (120 degrees) of a unit circle and by a chord of length sqrt(3). Three such segments result when an equilateral triangle with side length sqrt(3) is circumscribed by a unit circle. The area of each segment is:
A = (R^2 / 2) * (theta - sin(theta))
A = (1^2 / 2) * (2*Pi/3 - sin(2*Pi/3))
A = (1 / 2) * (2*Pi/3 - sqrt(3)/2)
A = Pi/3 - sqrt(3)/4 = (Pi - 3*sqrt(3)/4) / 3 = 0.61418484...
where Pi (A000796) is the area of the circle, and 3*sqrt(3)/4 (A104954) is the area of the inscribed equilateral triangle.
The sagitta (height) of the circular segment is:
h = R * (1 - cos(theta/2))
h = 1 * (1 - cos(Pi/3))
h = 1 - 1/2 = 0.5 (A020761)

Examples

			0.6141848493043784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/3-sqrt(3)/4);
  • Mathematica
    RealDigits[Pi/3 - Sqrt[3]/4, 10, 100][[1]]
  • PARI
    Pi/3 - sqrt(3)/4

Formula

Equals A019670 - A120011. - Omar E. Pol, Dec 08 2022
Equals A093731 / 2. - Michal Paulovic, Mar 08 2024

A381485 Decimal expansion of sqrt(13)/6.

Original entry on oeis.org

6, 0, 0, 9, 2, 5, 2, 1, 2, 5, 7, 7, 3, 3, 1, 5, 4, 8, 8, 5, 3, 2, 0, 3, 5, 4, 4, 5, 7, 8, 4, 1, 5, 9, 9, 1, 0, 4, 1, 8, 8, 2, 7, 6, 2, 3, 0, 7, 5, 4, 1, 0, 3, 5, 4, 5, 1, 7, 4, 2, 1, 7, 6, 0, 3, 7, 8, 6, 1, 1, 5, 8, 0, 4, 8, 8, 3, 5, 0, 7, 4, 2, 0, 0, 7, 6, 9, 8, 4, 7, 0, 0, 3, 0, 8, 1, 7, 8, 6, 2, 7, 8, 9, 1, 9
Offset: 0

Views

Author

Amiram Eldar, Feb 24 2025

Keywords

Comments

The greatest possible minimum distance between 6 points in a unit square.
The solution was found by Ronald L. Graham and reported by Schaer (1965).

Examples

			0.60092521257733154885320354457841599104188276230754...
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Solutions for k points: A002193 (k = 2), A120683 (k = 3), 1 (k = 4), A010503 (k = 5), this constant (k = 6), A379338 (k = 7), A101263 (k = 8), A020761 (k = 9), A281065 (k = 10).

Programs

  • Mathematica
    RealDigits[Sqrt[13] / 6, 10, 120][[1]]
  • PARI
    list(len) = digits(floor(10^len*quadgen(52)/6));

Formula

Equals A010470 / 6 = A295330 / 3 = A344069 / 2 = A176019 - 1/2 = sqrt(A142464).
Minimal polynomial: 36*x^2 - 13.

A021108 Decimal expansion of 1/104.

Original entry on oeis.org

0, 0, 9, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4
Offset: 0

Views

Author

Keywords

Comments

After 9, periodic with period 6: [6, 1, 5, 3, 8, 4]. See also A021030 (1/26), A021069 (1/65), A021420 (1/416), A021654 (1/650). - Bruno Berselli, Apr 13 2018

Examples

			0.009615384615384615384615384615384615384615384615384615384615384...
		

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[1/104, 10, 120][[1]]] (* or *) PadRight[{0, 0, 9, 6}, 120,{3, 8, 4, 6, 1, 5}] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Equals A020821 * A021017 = A020773 * A021030 = A020761 * A021056. - Bruno Berselli, Apr 13 2018

A335094 Decimal expansion of (15 - 4*sqrt(2))/8.

Original entry on oeis.org

1, 1, 6, 7, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6, 2, 3, 2, 8, 3, 6, 1, 7, 9, 2, 1, 3, 6, 3
Offset: 1

Views

Author

Jeremy Tan, Sep 12 2020

Keywords

Comments

Largest overhang off an edge achievable with four unit-length bricks.
Corresponding values for one, two and three bricks are 1/2, 3/4 and 1 respectively.

Examples

			1.1678932188134524755991556378951...
		

Crossrefs

Cf. A020761 (1/2), A152627 (3/4).

Programs

  • Mathematica
    First@ RealDigits@ N[(15 - 4 Sqrt[2])/8, 102]
  • PARI
    (15-4*sqrt(2))/8
Previous Showing 11-20 of 21 results. Next