cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A343892 Side b of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.

Original entry on oeis.org

3, 10, 12, 15, 21, 30, 36, 35, 40, 44, 55, 56, 52, 63, 65, 78, 70, 90, 77, 105, 99, 85, 102, 119, 132, 136, 117, 114, 143, 133, 126, 152, 171, 154, 182, 168, 165, 210, 195, 161, 176, 184, 208, 207, 187, 240, 230, 253, 200, 221, 198, 255, 225, 234, 216, 275, 300, 306, 247, 270
Offset: 1

Views

Author

Bernard Schott, May 06 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
The sequence is not increasing because a(7) = 36 > a(8) = 35, but, these sides b are listed in increasing order in A020890.
The first term appearing twice is 330 and corresponds to triples (435, 330, 638) and (460, 330, 759), the second one is 462 and corresponds to triples (483, 462, 506) and (532, 462, 627).
For the corresponding primitive triples and miscellaneous properties and references, see A343891.

Examples

			a(4) = 15, because the fourth triple is (21, 15, 35) with side b = 15, satisfying 1/15 = 2/21 - 1/35 and 31-15 < 21 < 31+15.
		

Crossrefs

Cf. A343891 (triples), A020883 (side a), A343893 (side c), A343894 (perimeter).
Cf. A020890 (sides b ordered).

Programs

  • Maple
    for a from 4 to 200 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-b
    				

Formula

A343893 Side c of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.

Original entry on oeis.org

6, 15, 20, 35, 28, 42, 45, 63, 88, 77, 66, 72, 117, 99, 104, 91, 130, 110, 165, 120, 143, 204, 187, 170, 156, 153, 221, 247, 195, 228, 266, 209, 190, 238, 210, 273, 285, 231, 255, 368, 336, 345, 304, 322, 391, 272, 299, 276, 425, 357, 450, 323, 400, 414, 513, 350, 325, 342, 475, 459
Offset: 1

Views

Author

Bernard Schott, May 06 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
The sequence is not increasing because a(4) = 35 > a(5) = 28, but, these sides c are listed in increasing order in A020886.
For the corresponding primitive triples and miscellaneous properties and references, see A343891.

Examples

			a(3) = 20, because the third triple is (15, 12, 20) with side c = 20, satisfying 1/20 = 2/15 - 1/12 and 15-12 < 20 < 15+12.
		

Crossrefs

Cf. A343891 (triples), A020883 (side a), A343892 (side b), A343894 (perimeter).
Cf. A020886 (sides c ordered).

Programs

  • Maple
    for a from 4 to 200 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-b
    				

Formula

A155176 Perimeter s/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 5, 40, 77, 287, 590, 1335, 1717, 2882, 3337, 3927, 4030, 6902, 7315, 7740, 8932, 15965, 20592, 26070, 27405, 34277, 34580, 40920, 50692, 92132, 96647, 113575, 139690, 160557, 167167, 220225, 237407, 279720, 300832, 310765, 336777, 389895
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,s/6]],{n,8!}];lst

A020890 Ordered set of (b + c - a)/2 as (a,b,c) runs through all primitive Pythagorean triples with a < b < c.

Original entry on oeis.org

3, 10, 12, 15, 21, 30, 35, 36, 40, 44, 52, 55, 56, 63, 65, 70, 77, 78, 85, 90, 99, 102, 105, 114, 117, 119, 126, 132, 133, 136, 143, 152, 154, 161, 165, 168, 171, 176, 182, 184, 187, 195, 198, 200, 207, 208, 210, 216, 221, 225, 230, 234, 240, 247, 253, 255, 260, 261, 270
Offset: 1

Views

Author

Keywords

Comments

From Bernard Schott, May 06 2021: (Start)
Also, ordered sides b of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c (A343892).
The first term appearing twice is 330 = a(71) = a(72). (End)

Crossrefs

Cf. A020889.
Cf. Triangles with 2/a = 1/b + 1/c: A343891 (triples), A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter).

Formula

a(n) = A020889(n)/2.

Extensions

Offset corrected to 1 by Ray Chandler, Jan 23 2020

A081934 Ordered odd long legs of primitive Pythagorean triangles.

Original entry on oeis.org

15, 21, 35, 45, 55, 63, 77, 91, 99, 105, 117, 143, 153, 165, 171, 187, 195, 209, 221, 231, 247, 253, 255, 273, 275, 285, 299, 323, 325, 345, 351, 357, 377, 391, 399, 403, 425, 435, 437, 459, 465, 475, 483, 493, 513, 525, 527, 551, 561, 575, 589, 595, 609, 621
Offset: 1

Views

Author

Lekraj Beedassy, Apr 23 2003

Keywords

Crossrefs

Cf. A020883.

Extensions

More terms from Ray Chandler, Oct 29 2003

A155177 Area ar/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

1, 5, 140, 385, 2870, 8555, 29370, 42925, 93665, 116795, 149226, 155155, 348551, 380380, 414090, 513590, 1229305, 1801800, 2567895, 2767905, 3873301, 3924830, 5053620, 6970150, 17090486, 18362930, 23396450, 31919165, 39336465, 41791750
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5, ar=3*4/2=6, s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;ar=a*b/2;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,ar/6]],{n,8!}];lst

A381006 Ordered long legs of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

24, 288, 4224, 66048, 1050624, 16785408, 268468224, 4295098368, 68720001024, 1099513724928, 17592194433024, 281475010265088, 4503599761588224, 72057594574798848, 1152921506754330624, 18446744082299486208, 295147905213712564224, 4722366483007084167168
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A020883.
Conjecture: These Pythagorean triangles are primitive. Verified up to n=100000.
The preceding conjecture is true, since, for n>=1, the values of a,b,c are given by Euclid's formula for generating Pythagorean triples: a=2xy, b=x^2-y^2, c=x^2+y^2 with x=2^(2n) and y=2^(2n-1)+1 and x and y are coprime and x is even and y is odd. - Chai Wah Wu, Feb 13 2025

Crossrefs

Cf. A020883.
Cf. A381005 (short legs), A381007 (hypotenuses), A381008 (perimeters), A381009 (areas).

Programs

  • Magma
    [2^(4*n) + 2^(2*n+1): n in [1..20]];
    
  • Mathematica
    A381006[n_] := #*(# + 2) & [4^n]; Array[A381006, 20] (* or *)
    LinearRecurrence[{20, -64}, {24, 288}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = 2^(4*n) + 2^(2*n+1)
    
  • Python
    def A381006(n): return (m:=1<<(n<<1))*(m+2) # Chai Wah Wu, Feb 13 2025

Formula

a(n) = 2^(4n) + 2^(2n+1).
a(n) = sqrt( A381007(n)^2 - A381005(n)^2 ).
G.f.: 24*(1 - 8*x)/((1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025

A024360 Number of primitive Pythagorean triangles with long leg n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times B takes value n.
Number of times n occurs in A020883.

Crossrefs

Programs

  • Mathematica
    A[s_] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[Import[ "https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[;; 10000, 2]]];
    A@024361 - A@024359 (* Jean-François Alcover, Mar 27 2020 *)

Formula

a(n) = A024361(n) - A024359(n). - Ray Chandler, Feb 03 2020

A155178 Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.

Original entry on oeis.org

1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,n]],{n,3*9!}];lst

A024355 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives values of AUB, sorted.

Original entry on oeis.org

3, 4, 5, 7, 8, 9, 11, 12, 12, 13, 15, 15, 16, 17, 19, 20, 20, 21, 21, 23, 24, 24, 25, 27, 28, 28, 29, 31, 32, 33, 33, 35, 35, 36, 36, 37, 39, 39, 40, 40, 41, 43, 44, 44, 45, 45, 47, 48, 48, 49, 51, 51, 52, 52, 53, 55, 55, 56, 56, 57, 57, 59, 60, 60, 60, 60, 61, 63, 63, 64, 65
Offset: 1

Views

Author

Keywords

Comments

Union of A020883 and A020884, sorted (with multiplicity); n occurs A024361(n) times. - Ray Chandler, Feb 03 2020

Crossrefs

Previous Showing 21-30 of 53 results. Next