0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
Offset: 1
A155176
Perimeter s/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.
Original entry on oeis.org
2, 5, 40, 77, 287, 590, 1335, 1717, 2882, 3337, 3927, 4030, 6902, 7315, 7740, 8932, 15965, 20592, 26070, 27405, 34277, 34580, 40920, 50692, 92132, 96647, 113575, 139690, 160557, 167167, 220225, 237407, 279720, 300832, 310765, 336777, 389895
Offset: 1
-
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,s/6]],{n,8!}];lst
A155177
Area ar/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.
Original entry on oeis.org
1, 5, 140, 385, 2870, 8555, 29370, 42925, 93665, 116795, 149226, 155155, 348551, 380380, 414090, 513590, 1229305, 1801800, 2567895, 2767905, 3873301, 3924830, 5053620, 6970150, 17090486, 18362930, 23396450, 31919165, 39336465, 41791750
Offset: 1
Cf.
A020882,
A020886,
A020884,
A020883,
A024364,
A024406,
A155171,
A155173,
A155174,
A155175,
A155176
-
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;ar=a*b/2;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,ar/6]],{n,8!}];lst
A081804
Hypotenuses of primitive Pythagorean triangles sorted on semiperimeter.
Original entry on oeis.org
5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 65, 73, 85, 85, 89, 101, 97, 113, 109, 125, 145, 145, 137, 149, 157, 181, 173, 169, 185, 197, 185, 193, 221, 205, 205, 229, 221, 257, 233, 265, 241, 269, 265, 277, 293, 313, 281, 325, 289, 317, 305, 305, 365, 325, 365, 337
Offset: 1
A155178
Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.
Original entry on oeis.org
1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
Offset: 1
Cf.
A020882,
A020886,
A020884,
A020883,
A024364,
A024406,
A155171,
A155173,
A155174,
A155175,
A155176,
A155177
-
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,n]],{n,3*9!}];lst
Comments