cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A155174 Long leg B of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

4, 12, 112, 220, 840, 1740, 3960, 5100, 8580, 9940, 11704, 12012, 20604, 21840, 23112, 26680, 47740, 61600, 78012, 82012, 102604, 103512, 122512, 151800, 276024, 289560, 340312, 418612, 481180, 501000, 660100, 711624, 838512, 901824, 931612
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,b]],{n,8!}];lst

A343894 Perimeters of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c. The triples (a, b, c) are listed in increasing order of side a, and if sides a coincide, in increasing order of side b.

Original entry on oeis.org

13, 37, 47, 71, 73, 107, 121, 143, 183, 177, 181, 191, 241, 239, 249, 253, 291, 299, 347, 337, 359, 409, 421, 429, 431, 433, 491, 517, 503, 529, 563, 537, 541, 579, 587, 649, 659, 661, 671, 753, 743, 769, 759, 781, 831, 767, 789, 793, 897, 851, 923, 863, 913, 947, 1033, 933
Offset: 1

Views

Author

Bernard Schott, May 07 2021

Keywords

Comments

The triples (a, b, c) are listed in increasing order of side a, and if sides a coincide then in increasing order of side b.
The sequence is not monotonic: a(9) = 183 > a(10) = 177.
All terms are odd.
For the corresponding primitive triples and miscellaneous properties and references, see A343891.

Examples

			a(3) = 15 + 12 + 20 = 47, because the third triple is (15, 12, 20) with relations 2/15 = 1/12 + 1/20 and 20-15 < 12 < 20+15.
		

Crossrefs

Cf. A343891 (triples), A020883 (side a), A343892 (side b), A343893 (side c), A343895.

Programs

Formula

a(n) = A343891(n, 1) + A343891(n, 2) + A343891(n, 3).
a(n) = A020883(n) + A343892(n) + A343893(n).

A063011 Ordered products of the sides of primitive Pythagorean triangles.

Original entry on oeis.org

60, 780, 2040, 4200, 12180, 14760, 15540, 40260, 65520, 66780, 92820, 120120, 189840, 192720, 199980, 235620, 277680, 354960, 453960, 497640, 595140, 619020, 643500, 1021020, 1063860, 1075620, 1265880, 1484340, 1609080, 1761540
Offset: 1

Views

Author

Henry Bottomley, Jul 26 2001

Keywords

Comments

It is an open question whether any two distinct Pythagorean triples can have the same product of their sides.

Examples

			a(1)=3*4*5=60; a(2)=5*12*13=780 (rather than 6*8*10=480, which would not be primitive).
		

Crossrefs

Programs

  • Mathematica
    k=17000000;lst={};Do[Do[If[IntegerQ[a=Sqrt[c^2-b^2]]&&GCD[a,b,c]==1,If[a>=b,Break[]];x=a*b*c;If[x<=k,AppendTo[lst,x]]],{b,c-1,4,-1}],{c,5,700,1}];Union@lst (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009 *)
    With[{nn=50},Take[(Times@@#)Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@ ({Times@@#, (Last[#]^2-First[#]^2)/2}&/@(Select[Subsets[Range[1,nn+1,2],{2}],GCD@@#==1&]))]//Union,nn]] (* Harvey P. Dale, Jun 08 2018 *)

A155175 Hypotenuse C of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

5, 13, 113, 221, 841, 1741, 3961, 5101, 8581, 9941, 11705, 12013, 20605, 21841, 23113, 26681, 47741, 61601, 78013, 82013, 102605, 103513, 122513, 151801, 276025, 289561, 340313, 418613, 481181, 501001, 660101, 711625, 838513, 901825, 931613
Offset: 1

Views

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,c]],{n,8!}];lst

A343893 Side c of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.

Original entry on oeis.org

6, 15, 20, 35, 28, 42, 45, 63, 88, 77, 66, 72, 117, 99, 104, 91, 130, 110, 165, 120, 143, 204, 187, 170, 156, 153, 221, 247, 195, 228, 266, 209, 190, 238, 210, 273, 285, 231, 255, 368, 336, 345, 304, 322, 391, 272, 299, 276, 425, 357, 450, 323, 400, 414, 513, 350, 325, 342, 475, 459
Offset: 1

Views

Author

Bernard Schott, May 06 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
The sequence is not increasing because a(4) = 35 > a(5) = 28, but, these sides c are listed in increasing order in A020886.
For the corresponding primitive triples and miscellaneous properties and references, see A343891.

Examples

			a(3) = 20, because the third triple is (15, 12, 20) with side c = 20, satisfying 1/20 = 2/15 - 1/12 and 15-12 < 20 < 15+12.
		

Crossrefs

Cf. A343891 (triples), A020883 (side a), A343892 (side b), A343894 (perimeter).
Cf. A020886 (sides c ordered).

Programs

  • Maple
    for a from 4 to 200 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-b
    				

Formula

A078926 Number of primitive Pythagorean triangles with perimeter 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Dean Hickerson, Dec 15 2002

Keywords

Comments

A Pythagorean triangle is a right triangle whose edge lengths are all integers; such a triangle is 'primitive' if the lengths are relatively prime.
Equivalently, number of odd unitary divisors d of n such that sqrt(n) < d < sqrt(2n). (A divisor d of n is 'unitary' if gcd(d,n/d) = 1.) Sketch of proof: A primitive Pythagorean triangle has edge lengths (r^2-s^2, 2rs, r^2+s^2), where 1<=s

Examples

			a(858)=2; the primitive Pythagorean triangles with edge lengths (364, 627, 725) and (195, 748, 773) both have perimeter 2*858 = 1716.
		

Crossrefs

a(n) = A070109(2n). A078927(n) is smallest s such that a(s)=n. a(n) is nonzero iff n is in A020886.

Programs

  • Magma
    UnitaryDivisors :=
      func;
    A078926:=
      func;
    [A078926(n):n in [1..105]];
    
  • Mathematica
    oddpart[n_] := If[OddQ[n], n, oddpart[n/2]]; a[n_] := Length[Select[Divisors[oddpart[n]], n<#^2<2n&&GCD[ #, n/# ]==1&]]
    (* Second program: *)
    Table[DivisorSum[n/2^IntegerExponent[n, 2], 1 &, n < #^2 < 2 n && CoprimeQ[#, n/#] &], {n, 105}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    A078926(n) = sumdiv(n,d,(d%2)*(1==gcd(d,n/d))*((d*d)>n)*((d*d)<(2*n))); \\ Antti Karttunen, Oct 07 2017

Extensions

Secondary offset added by Antti Karttunen, Oct 07 2017

A155176 Perimeter s/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 5, 40, 77, 287, 590, 1335, 1717, 2882, 3337, 3927, 4030, 6902, 7315, 7740, 8932, 15965, 20592, 26070, 27405, 34277, 34580, 40920, 50692, 92132, 96647, 113575, 139690, 160557, 167167, 220225, 237407, 279720, 300832, 310765, 336777, 389895
Offset: 1

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,s/6]],{n,8!}];lst

A155177 Area ar/6 (divided by 6) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

1, 5, 140, 385, 2870, 8555, 29370, 42925, 93665, 116795, 149226, 155155, 348551, 380380, 414090, 513590, 1229305, 1801800, 2567895, 2767905, 3873301, 3924830, 5053620, 6970150, 17090486, 18362930, 23396450, 31919165, 39336465, 41791750
Offset: 1

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5, ar=3*4/2=6, s=12-+1primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;ar=a*b/2;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,ar/6]],{n,8!}];lst

A081804 Hypotenuses of primitive Pythagorean triangles sorted on semiperimeter.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 65, 73, 85, 85, 89, 101, 97, 113, 109, 125, 145, 145, 137, 149, 157, 181, 173, 169, 185, 197, 185, 193, 221, 205, 205, 229, 221, 257, 233, 265, 241, 269, 265, 277, 293, 313, 281, 325, 289, 317, 305, 305, 365, 325, 365, 337
Offset: 1

Author

Lekraj Beedassy, Apr 23 2003

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Oct 29 2003

A155178 Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.

Original entry on oeis.org

1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
Offset: 1

Author

Keywords

Comments

p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,n]],{n,3*9!}];lst
Previous Showing 11-20 of 31 results. Next