cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A015113 Triangle of q-binomial coefficients for q=-5.

Original entry on oeis.org

1, 1, 1, 1, -4, 1, 1, 21, 21, 1, 1, -104, 546, -104, 1, 1, 521, 13546, 13546, 521, 1, 1, -2604, 339171, -1679704, 339171, -2604, 1, 1, 13021, 8476671, 210302171, 210302171, 8476671, 13021, 1, 1, -65104, 211929796, -26279294704, 131649159046
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014986 (k=1), A015255 (k=2), A015272, A015291, A015309, A015327, A015344, A015360, A015377, A015391 (k=10), A015409, A015427,... - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15); A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -5], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015113(n, k, q=-5)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015116 Triangle of q-binomial coefficients for q=-6.

Original entry on oeis.org

1, 1, 1, 1, -5, 1, 1, 31, 31, 1, 1, -185, 1147, -185, 1, 1, 1111, 41107, 41107, 1111, 1, 1, -6665, 1480963, -8838005, 1480963, -6665, 1, 1, 39991, 53308003, 1910490043, 1910490043, 53308003, 39991, 1, 1, -239945, 1919128099, -412612541285
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014987 (k=1), A015257 (k=2), A015273, A015292, A015310, A015328, A015345, A015361, A015378, A015392 (k=10), A015410, A015429,... - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15); A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -6], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015116(n, k, q=-6)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015118 Triangle of q-binomial coefficients for q=-8.

Original entry on oeis.org

1, 1, 1, 1, -7, 1, 1, 57, 57, 1, 1, -455, 3705, -455, 1, 1, 3641, 236665, 236665, 3641, 1, 1, -29127, 15150201, -120935815, 15150201, -29127, 1, 1, 233017, 969583737, 61934287481, 61934287481, 969583737, 233017, 1, 1, -1864135, 62053592185
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are: A000012 (k=0), A014990 (k=1), A015259 (k=2), A015276 (k=3), A015294 (k=4), A015313 (k=5), A015331 (k=6), A015347 (k=7), A015364 (k=8), A015380 (k=9), A015394 (k=10), A015413 (k=11), A015431 (k=12). - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -8], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015118(n, k, q=-8)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015121 Triangle of q-binomial coefficients for q=-9.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are: A000012 (k=0), A014991 (k=1), A015260 (k=2), A015277 (k=3), A015295 (k=4), A015315 (k=5), A015332 (k=6), A015349 (k=7), A015365 (k=8), A015381 (k=9), A015397 (k=10), A015414 (k=11), A015432 (k=12). - M. F. Hasler, Nov 05 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015123 Triangle of q-binomial coefficients for q=-10.

Original entry on oeis.org

1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals in the former, or row/columns in the latter, are then (k=0,...,12): A000012, A014992, A015261, A015278, A015298, A015316, A015333, A015350, A015367, A015382, A015398, A015417, A015433. - M. F. Hasler, Nov 04 & Nov 05 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015124 Triangle of q-binomial coefficients for q=-11.

Original entry on oeis.org

1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals in the former, or row/columns in the latter, are then (k=0,...,12): A000012, A014993, A015262, A015279, A015300, A015317, A015334, A015353, A015368, A015383, A015499, A015418, A015434. - M. F. Hasler, Nov 04 & Nov 05 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015125 Triangle of q-binomial coefficients for q=-12.

Original entry on oeis.org

1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are, for k=0,...,12: A000012, A014994, A015264, A015281, A015302, A015319, A015336, A015354, A015369, A015384, A015401, A015421, A015436. - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015132 Triangle of (Gaussian) q-binomial coefficients for q=-14.

Original entry on oeis.org

1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • PARI
    T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A157640 Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 3.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 160, 780, 160, 1, 1, 605, 12100, 12100, 605, 1, 1, 2184, 165165, 677600, 165165, 2184, 1, 1, 7651, 2088723, 32401985, 32401985, 2088723, 7651, 1, 1, 26240, 25095280, 1405335680, 5313925540, 1405335680, 25095280
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Row sums are: {1, 2, 10, 80, 1102, 25412, 1012300, 68996720, 8174839942, 1670428649564, 594362629986268,...}.
Other triangles in the family (see name) include: q = 2 (see A157638), q = 3 (this triangle), and q = 4 (see A157641). - Werner Schulte, Nov 16 2018

Examples

			Triangle begins:
  1;
  1, 1;
  1, 8, 1;
  1, 39, 39, 1;
  1, 160, 780, 160, 1;
  1, 605, 12100, 12100, 605, 1;
  1, 2184, 165165, 677600, 165165, 2184, 1;
  1, 7651, 2088723, 32401985, 32401985, 2088723, 7651, 1;
  1, 26240, 25095280, 1405335680, 5313925540, 1405335680, 25095280, 26240, 1;
  ...
		

Crossrefs

Programs

  • Magma
    q:=3; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
    
  • Mathematica
    t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
    b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
    Flatten[Table[Table[b[n, k, 2], {k, 0, n}], {n, 0, 10}]]
  • PARI
    T(n, k) = {binomial(n, k)*polcoef(x^k/prod(j=0, k, 1-3^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 19 2018
    
  • PARI
    my(q=3); for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", ")); print) \\ G. C. Greubel, Nov 17 2018
    
  • Sage
    [[ binomial(n,k)*gaussian_binomial(n,k).subs(q=3) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018

Formula

T(n,k) = t(n)/(t(k)*t(n-k)) where t(n) = Product_{k=1..n} Sum_{i=0..k-1} k*3^i.
T(n,k) = binomial(n,k) * A022167(n,k) for 0 <= k <= n. - Werner Schulte, Nov 16 2018

Extensions

Edited and simpler name by Werner Schulte and Andrew Howroyd, Nov 19 2018

A347486 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 3.

Original entry on oeis.org

1, 1, 4, 1, 13, 52, 1, 40, 130, 520, 2080, 1, 121, 1210, 4840, 15730, 62920, 251680, 1, 364, 11011, 33880, 44044, 440440, 1431430, 1761760, 5725720, 22902880, 91611520, 1, 1093, 99463, 925771, 397852, 12035023, 37030840, 120350230, 48140092, 481400920, 1564552990
Offset: 1

Views

Author

Álvar Ibeas, Sep 03 2021

Keywords

Comments

Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order.
For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_3)^n with dimension increments (e_1,...,e_r).

Examples

			The number of subspace chains 0 < V_1 < V_2 < (F_3)^3 is 52 = T(3, (1, 1, 1)). There are 13 = A022167(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 4 = A022167(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
  k:  1   2    3    4     5     6      7
      ----------------------------------
n=1:  1
n=2:  1   4
n=3:  1  13   52
n=4:  1  40  130  520  2080
n=5:  1 121 1210 4840 15730 62920 251680
		

References

  • R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.

Crossrefs

Cf. A036038 (q = 1), A022167, A015001 (last entry in each row).

Formula

T(n, (n)) = 1. T(n, L) = A022167(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
Previous Showing 11-20 of 26 results. Next