A015113
Triangle of q-binomial coefficients for q=-5.
Original entry on oeis.org
1, 1, 1, 1, -4, 1, 1, 21, 21, 1, 1, -104, 546, -104, 1, 1, 521, 13546, 13546, 521, 1, 1, -2604, 339171, -1679704, 339171, -2604, 1, 1, 13021, 8476671, 210302171, 210302171, 8476671, 13021, 1, 1, -65104, 211929796, -26279294704, 131649159046
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15);
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 04 2012
-
Table[QBinomial[n, k, -5], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015113(n, k, q=-5)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015116
Triangle of q-binomial coefficients for q=-6.
Original entry on oeis.org
1, 1, 1, 1, -5, 1, 1, 31, 31, 1, 1, -185, 1147, -185, 1, 1, 1111, 41107, 41107, 1111, 1, 1, -6665, 1480963, -8838005, 1480963, -6665, 1, 1, 39991, 53308003, 1910490043, 1910490043, 53308003, 39991, 1, 1, -239945, 1919128099, -412612541285
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15);
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 04 2012
-
Table[QBinomial[n, k, -6], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015116(n, k, q=-6)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015118
Triangle of q-binomial coefficients for q=-8.
Original entry on oeis.org
1, 1, 1, 1, -7, 1, 1, 57, 57, 1, 1, -455, 3705, -455, 1, 1, 3641, 236665, 236665, 3641, 1, 1, -29127, 15150201, -120935815, 15150201, -29127, 1, 1, 233017, 969583737, 61934287481, 61934287481, 969583737, 233017, 1, 1, -1864135, 62053592185
Offset: 0
Cf. analog triangles for negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -8], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015118(n, k, q=-8)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015121
Triangle of q-binomial coefficients for q=-9.
Original entry on oeis.org
1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015123
Triangle of q-binomial coefficients for q=-10.
Original entry on oeis.org
1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015124
Triangle of q-binomial coefficients for q=-11.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. - M. F. Hasler, Nov 05 2012
-
T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015125
Triangle of q-binomial coefficients for q=-12.
Original entry on oeis.org
1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015132
Triangle of (Gaussian) q-binomial coefficients for q=-14.
Original entry on oeis.org
1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A157640
Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 3.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 160, 780, 160, 1, 1, 605, 12100, 12100, 605, 1, 1, 2184, 165165, 677600, 165165, 2184, 1, 1, 7651, 2088723, 32401985, 32401985, 2088723, 7651, 1, 1, 26240, 25095280, 1405335680, 5313925540, 1405335680, 25095280
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 160, 780, 160, 1;
1, 605, 12100, 12100, 605, 1;
1, 2184, 165165, 677600, 165165, 2184, 1;
1, 7651, 2088723, 32401985, 32401985, 2088723, 7651, 1;
1, 26240, 25095280, 1405335680, 5313925540, 1405335680, 25095280, 26240, 1;
...
-
q:=3; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
-
t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
Flatten[Table[Table[b[n, k, 2], {k, 0, n}], {n, 0, 10}]]
-
T(n, k) = {binomial(n, k)*polcoef(x^k/prod(j=0, k, 1-3^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 19 2018
-
my(q=3); for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", ")); print) \\ G. C. Greubel, Nov 17 2018
-
[[ binomial(n,k)*gaussian_binomial(n,k).subs(q=3) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018
A347486
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 3.
Original entry on oeis.org
1, 1, 4, 1, 13, 52, 1, 40, 130, 520, 2080, 1, 121, 1210, 4840, 15730, 62920, 251680, 1, 364, 11011, 33880, 44044, 440440, 1431430, 1761760, 5725720, 22902880, 91611520, 1, 1093, 99463, 925771, 397852, 12035023, 37030840, 120350230, 48140092, 481400920, 1564552990
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_3)^3 is 52 = T(3, (1, 1, 1)). There are 13 = A022167(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 4 = A022167(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5 6 7
----------------------------------
n=1: 1
n=2: 1 4
n=3: 1 13 52
n=4: 1 40 130 520 2080
n=5: 1 121 1210 4840 15730 62920 251680
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Comments