cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A262996 Ten-digit semiprimes with exactly one 1, two 2's, three 3's and four 4's.

Original entry on oeis.org

1223444433, 1224343443, 1233444243, 1233444423, 1234424343, 1234442343, 1243344243, 1243442433, 1244332443, 1244343423, 1244344323, 1244442333, 1323442443, 1324244433, 1324344423, 1324443243, 1324443423, 1324444323, 1332244443, 1334244243, 1334244423, 1334424243, 1342443243, 1343242443
Offset: 1

Views

Author

Zak Seidov, Oct 07 2015

Keywords

Comments

From total 10!/(2!*3!*4!)=12600 ten-digit numbers with exactly one 1, two 2's, three 3's and four 4's, exactly 732 numbers are semiprimes of the form 3*prime.

Crossrefs

Cf. A022915.

Programs

  • Mathematica
    Select[(FromDigits[#] & /@ Permutations[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4}]), PrimeQ[#/3] &]
  • PARI
    forprime(p=407814811, 1481443741, d=digits(3*p); if(vecsort(d)==[1, 2, 2, 3, 3, 3, 4, 4, 4, 4], print1(3*p", "))) \\ Charles R Greathouse IV, Sep 24 2015

A064382 Number of ways to put numbers 1, 2, ..., n*(n+1)/2 in a triangular array of n rows in such a way that each row is increasing or decreasing.

Original entry on oeis.org

1, 6, 240, 100800, 605404800, 65703372134400, 155590841484029952000, 9416463528385701835407360000, 16689045681854870055279680279347200000, 976264092939656812770160178186221444104192000000, 2097176933095579995533106263090939623313258344938995712000000
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Sep 27 2001

Keywords

Crossrefs

Cf. A022915.

Formula

a(n) = 2^(n-1) * A022915(n) = 2^(n-1) * (n*(n+1)/2)!/(1!*2!*...*n!).

Extensions

Corrected and extended by Vladeta Jovovic, Sep 28 2001

A172528 Triangular array T(n,k) n,k>=0 is the number of k letter words formed using at most 1a,2b's,3c's,...,n#'s.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 1, 3, 8, 19, 38, 60, 60, 1, 4, 15, 53, 175, 535, 1490, 3675, 7700, 12600, 12600, 1, 5, 24, 111, 494, 2111, 8634, 33635, 123998, 428820, 1373820, 4003230, 10325700, 22522500, 37837800, 37837800
Offset: 0

Views

Author

Geoffrey Critzer, Feb 06 2010

Keywords

Comments

The row lengths are n(n+1)/2 +1 (A000124).

Examples

			T(3,2) = 8 because there are 8 two letter words that can be formed using the letters a,b,b,c,c,c: {a, b}, {a, c}, {b, a}, {b, b}, {b, c}, {c, a}, {c, b}, {c, c}.
Triangle Begins
1;
1,1;
1,2,3,3;
1,3,8,19,38,60,60;
1,4,15,53,175,535,1490,3675,7700,12600,12600;
		

Crossrefs

The last entry in row n is A022915(n).

Programs

  • Mathematica
    Table[CoefficientList[Series[Product[Sum[x^i/i!, {i, 0, n}], {n, 0, m}], {x,0, (m^2 + m)/2}], x]*Table[n!, {n, 0, (m^2 + m)/2}], {m, 0,5}] // Grid

Formula

E.g.f. for row n is Product_m=0...n[Sum_i=0...m[x^i/i! ]].

A249675 Multinomial coefficient (2+3+...+prime(n); 2,3,5,7,...,prime(n)) = A007504(n)! / A111180(n).

Original entry on oeis.org

1, 10, 2520, 49008960, 1052427228652800, 18543848132205515927808000, 3663312848979081767807855264321333760000, 1860046674511129497317809046448809961990598435124736000000, 46250563343969315569958487234182581699417368835772148395100189090556723200000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(ithprime(k),k=1..n)!/mul(ithprime(k)!,k=1..n);
    seq(a(n),n=0..9); # Peter Luschny, Nov 04 2014
  • PARI
    a(n) = my(d=1,t=0); forprime(p=2,prime(n),d*=p!;t+=p);t!\d

A269516 Number of T(n) X T(n) matrices containing the multiset {1, 2, 2, 3, 3, 3, ..., n, n, ..., n} in each row and column, where T(n) = A000217(n).

Original entry on oeis.org

1, 6, 5450400
Offset: 1

Views

Author

Rick L. Shepherd, Feb 28 2016

Keywords

Comments

Each 1 <= k <= n appears k times in the multiset. Terms include rotations/reflections. Related to Latin squares. Inspired by related question in "Chess Set Latin Square" link.

Examples

			The a(3) = 5450400 (= 6!*7570) 6 X 6 matrices include
  1 2 2 3 3 3
  2 1 2 3 3 3
  2 2 1 3 3 3
  3 3 3 1 2 2
  3 3 3 2 1 2
  3 3 3 2 2 1.
Using terminology such as that suggested by Rebecca J. Stones in a "Chess Set Latin Square" comment, this matrix is a (3, 2, 1)-frequency square corresponding to a decomposition of K_{6,6} into one 3-regular spanning subgraph, one 2-regular spanning subgraph, and one 1-regular spanning subgraph.
		

Crossrefs

Cf. A022915 (includes linear arrangements of same multisets), A000217, A002860.

A336871 Number of divisors d of A076954(n) with distinct prime multiplicities such that the numerator of A006939(n)/d also has distinct prime multiplicities.

Original entry on oeis.org

1, 2, 4, 11, 28, 96, 309, 1256, 4676, 21647
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

The sequence A006939 is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
The sequence A076954 is A076954(n) = Product_{i=1..n} prime(i)^i.

Examples

			The a(0) = 1 through a(3) = 11 divisors:
  1  2  18   2250
     1   9   1125
         3    375
         1    125
               75
               45
               25
               18
                9
                5
                1
		

Crossrefs

A336419 is the version for superprimorials.
A336500 is the generalization to all positive integers.
A000005 counts divisors.
A006939 lists superprimorials or Chernoff numbers.
A007425 counts divisors of divisors.
A076954 is a sister of superprimorials.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327523 counts factorizations of elements of A130091 using elements of A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    cochern[n_]:=Product[Prime[i]^i,{i,n}];
    Table[Length[Select[Divisors[cochern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,5}]
Previous Showing 31-36 of 36 results.