cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A055851 a(n) and floor(a(n)/6) are both squares; i.e., squares that remain squares when written in base 6 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 729, 2401, 9604, 71289, 235225, 940900, 6985449, 23049601, 92198404, 684502569, 2258625625, 9034502500, 67074266169, 221322261601, 885289046404, 6572593581849, 21687323011225, 86749292044900
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

For the first 3 terms, the above "base 6" interpretation is questionable, since they have only 1 digit in base 6. It is understood that dropping this digit yields 0. - M. F. Hasler, Jan 15 2012
Base-6 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A204517 (base 7), A204503 (base 9) and A023110 (base 10). - M. F. Hasler, Jan 15 2012

Examples

			a(5) = 100 because 100 = 10^2 = 244 base 6 and 24 base 6 = 16 = 4^2.
		

Crossrefs

Cf. A023110.

Programs

  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012

Formula

a(n) = A204518(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(9*x^8+100*x^7+25*x^6-162*x^5-296*x^4-74*x^3+9*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 15 2014

Extensions

More terms added and offset changed to 1 by M. F. Hasler, Jan 16 2012

A055859 a(n) and floor(a(n)/7) are both squares; i.e., squares which remain squares when written in base 7 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 64, 256, 2025, 16129, 64516, 514089, 4096576, 16386304, 130576329, 1040514049, 4162056196, 33165873225, 264286471744, 1057145886976, 8424001222569, 67127723308801, 268510893235204, 2139663144659049, 17050177433963584, 68200709735854336
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Square roots of a(n) are listed in A204516, square roots of floor(a(n)/7) in A204517. - M. F. Hasler, Jan 16 2012

Examples

			a(5) = 256 because 256 = 16^2 = 514 base 7 and 51 base 7 = 36 = 6^2.
		

Crossrefs

Cf. A023110.

Formula

a(n) = A204516(n)^2. - M. F. Hasler, Jan 16 2012
Empirical g.f.: -x^2*(9*x^8+256*x^7+64*x^6-270*x^5-764*x^4-191*x^3+9*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-254*x^3+1)). - Colin Barker, Sep 15 2014

A055872 a(n) and floor(a(n)/8) are both squares; i.e., squares that remain squares when written in base 8 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 36, 289, 1156, 9801, 39204, 332929, 1331716, 11309769, 45239076, 384199201, 1536796804, 13051463049, 52205852196, 443365544449, 1773462177796, 15061377048201, 60245508192804
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

For the first 3 terms which have only 1 digit in base 8, removing this digit is meant to yield 0.
Base-8 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A055851 (base 6), A055859 (base 7), A204503 (base 9) and A023110 (base 10). - M. F. Hasler, Jan 15 2012

Examples

			a(5) = 289 because 289 = 17^2 = 441 base 8 and 44 base 8 = 36 = 6^2.
		

Crossrefs

Cf. A023110, A055792 (bisection).

Programs

  • Mathematica
    Select[Range[0,8*10^6]^2,IntegerQ[Sqrt[FromDigits[Most[ IntegerDigits[ #,8]], 8]]]&] (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    b=8;for(n=1,200,issquare(n^2\b) && print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012

Formula

a(n) = A204514(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(4*x+1)*(9*x^4-26*x^2+1) / ((x-1)*(x+1)*(x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Sep 15 2014

Extensions

More terms added and offset changed to 1 by M. F. Hasler, Jan 15 2012

A031150 Appending a digit to n^2 gives another perfect square.

Original entry on oeis.org

1, 2, 4, 5, 6, 12, 18, 43, 80, 154, 191, 228, 456, 684, 1633, 3038, 5848, 7253, 8658, 17316, 25974, 62011, 115364, 222070, 275423, 328776, 657552, 986328, 2354785, 4380794, 8432812, 10458821, 12484830, 24969660, 37454490
Offset: 1

Views

Author

Keywords

Comments

Square root of 'Squares from A023110 with last digit removed'.
One could include an initial '0', and even list it with multiplicity 3 or 4, since 00, 01, 04 and 09 are all perfect squares: In analogy to corresponding sequences for other bases, this sequence could be defined as sqrt(floor[A023110/10]), see A204512 [base 8], A204517 (base 7), A204519 (base 6), A204521 [base 5], A001353 [base 3], A001542 [base 2]. (For bases 4 and 9, the corresponding sequence contains all integers.) - M. F. Hasler, Jan 16 2012

Examples

			5^2 = 25 and 16^2 = 256, so 5 is in the sequence.
115364^2 = 13308852496, 364813^2 = 133088524969.
		

References

  • R. K. Guy, Neg and Reg, preprint, Jan 2012.

Crossrefs

See A202303 for the resulting squares.

Programs

  • Maple
    for i from 1 to 150000 do if (floor(sqrt(10 * i^2 + 9)) > floor(sqrt(10 * i^2))) then print(i) end if end do;
  • Mathematica
    CoefficientList[Series[(x^10 + 2 x^9 + 4 x^8 + 5 x^7 + 18 x^6 + 12 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)/(x^14 - 38 x^7 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,38,0,0,0,0,0,0,-1},{1,2,4,5,6,12,18,43,80,154,191,228,456,684},40] (* Harvey P. Dale, Jun 09 2017 *)

Formula

G.f.: x*(x^10+2*x^9+4*x^8+5*x^7+18*x^6+12*x^5+6*x^4+5*x^3+4*x^2+2*x+1) / (x^14-38*x^7+1). - Colin Barker, Jan 30 2013

A204517 Square root of floor[A055859(n)/7].

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
    
  • PARI
    A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)

Formula

A204517(n) = sqrt(floor(A204516(n)^2/7)).
G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)

A204512 Square roots of [A055872/8]: Their square written in base 8, with some digit appended, is again a square.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 35, 70, 204, 408, 1189, 2378, 6930, 13860, 40391, 80782, 235416, 470832, 1372105, 2744210, 7997214, 15994428, 46611179, 93222358, 271669860, 543339720, 1583407981, 3166815962, 9228778026, 18457556052, 53789260175, 107578520350
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A031150. The square of the terms (= truncated squares A055872) are listed in A204504.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Mathematica
    CoefficientList[Series[(x^4 (1+2x))/(1-6x^2+x^4),{x,0,40}],x] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    b=8;for(n=1,1e7,issquare(n^2\b) & print1(sqrtint(n^2\b)","))
    
  • PARI
    a(n)=polcoeff((2*x^5 + x^4)/(x^4 - 6*x^2 + 1+O(x^n)),n)

Formula

G.f. = x^4*(1 + 2*x)/(1 - 6*x^2 + x^4)

A023111 Squares that remain square when the digit 1 is appended.

Original entry on oeis.org

0, 36, 51984, 74960964, 108093658176, 155870980128900, 224765845252215696, 324112192982714904804, 467369557515229640511744, 673946577824768158903030116, 971830497853758169908528915600, 1401378903958541456239939793265156, 2020787407677718926139823273359439424
Offset: 1

Views

Author

Keywords

Comments

The terms of the sequence are the squares of the y-values in the solution to the Pellian equation x^2-10*y^2=1. - Colin Barker, Sep 28 2013
After 0, the sequence lists the numbers k for which A055437(k) is a perfect square. - Bruno Berselli, Jan 16 2018

Examples

			36 is a term because both 36 and 361 are squares.
		

Crossrefs

Cf. A023110.

Programs

  • Mathematica
    LinearRecurrence[{1443,-1443,1},{0,36,51984},20] (* Harvey P. Dale, Dec 23 2013 *)
  • PARI
    concat(0, Vec(36*x^2*(1 + x) / ((1 - x)*(1 - 1442*x + x^2)) + O(x^15))) \\ Colin Barker, Dec 29 2017

Formula

G.f.: 36*x^2*(1 + x) / ((1 - x)*(1 - 1442*x + x^2)). - Colin Barker, Jan 31 2013
a(0)=0, a(1)=36, a(2)=51984, a(n) = 1443*a(n-1)-1443*a(n-2)+a(n-3). - Harvey P. Dale, Dec 23 2013
a(n) = (721 + 228*sqrt(10))^(-n)*(721+228*sqrt(10) - 2*(721+228*sqrt(10))^n + (721-228*sqrt(10))*(721+228*sqrt(10))^(2*n)) / 40. - Colin Barker, Dec 29 2017

A030686 Smallest nontrivial extension of n^2 which is a square.

Original entry on oeis.org

16, 49, 900, 169, 256, 361, 4900, 6400, 8100, 10000, 12100, 1444, 16900, 19600, 22500, 25600, 28900, 3249, 36100, 40000, 44100, 48400, 52900, 57600, 62500, 67600, 72900, 78400, 84100, 90000, 96100, 102400, 108900, 115600, 122500
Offset: 1

Views

Author

Keywords

Comments

Nontrivial extension means appending at least one digit even if the number is already a square.

Crossrefs

See also A023110 = A031149^2 and A202303 = A031150^2 for a related concept, and cross-references there (and in links) for the analog in bases other than 10. - M. F. Hasler, Sep 28 2014

Formula

a(n) = A030687(n)^2. - M. F. Hasler, Sep 28 2014
a(n) = A030666(n^2). - Alonso del Arte, Apr 01 2020

A204519 Square root of floor(A055851(n)/6).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 11, 20, 40, 109, 198, 396, 1079, 1960, 3920, 10681, 19402, 38804, 105731, 192060, 384120, 1046629, 1901198, 3802396, 10360559, 18819920, 37639840, 102558961, 186298002
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-6 analog of A031150 [base 10], A204512 [base 8], A204517 (base 7), A204521 [base 5], A001353 [base 3], A001542 [base 2]. For bases 4 and 9, the corresponding sequence contains all integers.

Crossrefs

Programs

  • Mathematica
    Sqrt[Floor[Select[Range[100000],IntegerQ[Sqrt[Quotient[#^2,6]]]&]^2/6]] (* Vaclav Kotesovec, Nov 26 2012 *)
  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))

Formula

Conjecture (for n>=8): a(n) = 10*a(n-3) - a(n-6). - Vaclav Kotesovec, Nov 26 2012
Empirical g.f.: x^4*(x^3+4*x^2+2*x+1) / (x^6-10*x^3+1). - Colin Barker, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Nov 26 2012

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014
Previous Showing 11-20 of 29 results. Next