cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A055793 Numbers k such that k and floor[k/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801, 1355023461779503195684, 18873042157456379352769
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Or, squares of the form 3k^2+1.
See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Examples

			a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
		

Crossrefs

Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
  • Maple
    A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{15,-15,1},{0,1,4,49},40] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    sq3nsqplus1(n) = { for(x=1,n, y = 3*x*x+1; \ print1(y" ") if(issquare(y),print1(y" ")) ) }
    

Formula

a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012

Extensions

More terms from Cino Hilliard, Mar 01 2003

A031149 Numbers whose square with its last digit deleted is also a square.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 13, 16, 19, 38, 57, 136, 253, 487, 604, 721, 1442, 2163, 5164, 9607, 18493, 22936, 27379, 54758, 82137, 196096, 364813, 702247, 870964, 1039681, 2079362, 3119043, 7446484, 13853287, 26666893, 33073696, 39480499, 78960998, 118441497, 282770296
Offset: 1

Views

Author

Keywords

Comments

Square root of A023110(n).
For the first 4 terms, the square has only one digit, but in analogy to the sequences in other bases (A204502, A204512, A204514, A204516, A204518, A204520, A004275, A055793, A055792), it is understood that deleting this digit yields 0.
From Robert Israel, Feb 16 2016: (Start)
Solutions x to x^2 = 10*y^2 + j, j in {0,1,4,6,9}, in increasing order of x.
j=0 occurs only for x=0.
Let M be the 2 X 2 matrix [19, 60; 6, 19].
Solutions of x^2 = 10*y^2 + 1 are (x,y)^T = M^k (1,0)^T for k >= 0.
Solutions of x^2 = 10*y^2 + 4 are (x,y)^T = M^k (2,0)^T for k >= 0.
Solutions of x^2 = 10*y^2 + 6 are (x,y)^T = M^k (4,1)^T and M^k (16,5)^T for k >= 0.
Solutions of x^2 = 10*y^2 + 9 are (x,y)^T = M^k (3,0)^T, M^k (7,2)^T, M^k (13,4)^T for k >= 0.
Since (1,0)^T <= (2,0)^T <= (3,0)^T <= (4,1)^T <= (7,2)^T <= (13,4)^T <= (16,5)^T <= (19,6)^T = M (1,0)^T (element-wise) and M has positive entries, we see that the terms always occur in this order, for successive k.
The eigenvalues of M are 19 + 6*sqrt(10) and 19 - 6*sqrt(10).
From this follow my formulas below and the G.f. (End)

Examples

			364813^2 = 133088524969, 115364^2 = 13308852496.
		

References

  • R. K. Guy, Neg and Reg, preprint, Jan 2012. [From N. J. A. Sloane, Jan 12 2012]

Crossrefs

Programs

  • Maple
    for i from 1 to 150000 do if (floor(sqrt(10 * i^2 + 9)) > floor(sqrt(10 * i^2))) then print(floor(sqrt(10 * i^2 + 9))) end if end do;
  • Mathematica
    fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range[ 0, 40000000], fQ] (* Harvey P. Dale, Jun 15 2011 *) (* modified by Robert G. Wilson v, Jan 16 2012 *)
  • PARI
    s=[]; for(n=0, 1e7, if(issquare(n^2\10), s=concat(s,n))); s \\ Colin Barker, Jan 17 2014; typo fixed by Zak Seidov, Jan 31 2014

Formula

Appears to satisfy: a(n)=38a(n-7)-a(n-14) which would require a(-k) to look like 3, 2, 1, 4, 7, 13, 16, 57, 38, 19, 136, ... for k>0. - Henry Bottomley, May 08 2001
Empirical g.f.: x^2*(1 + 2*x + 3*x^2 + 4*x^3 + 7*x^4 + 13*x^5 + 16*x^6 - 19*x^7 - 38*x^8 - 57*x^9 - 16*x^10 - 13*x^11 - 7*x^12 - 4*x^13) / ((1 - 38*x^7 + x^14)). - Colin Barker, Jan 17 2014
a(n) = 38*a(n-7) - a(n-14) for n>15 (conjectured). - Colin Barker, Dec 31 2017
With e1 = 19 + 6*sqrt(10) and e2 = 19 - 6*sqrt(10),
a(2+7k) = (e1^k + e2^k)/2,
a(3+7k) = e1^k + e2^k,
a(4+7k) = (3/2) (e1^k + e2^k),
a(5+7k) = (2+sqrt(10)/2) e1^k + (2-sqrt(10)/2) e2^k,
a(6+7k) = (7/2+sqrt(10)) e1^k + (7/2-sqrt(10)) e2^k,
a(7+7k) = (13/2+2 sqrt(10)) e1^k + (13/2-2 sqrt(10)) e2^k,
a(8+7k) = (8+5 sqrt(10)/2) e1^k + (8-5 sqrt(10)/2) e2^k. - Robert Israel, Feb 16 2016

Extensions

4 initial terms added by M. F. Hasler, Jan 15 2012
a(40) from Robert G. Wilson v, Jan 15 2012

A055812 a(n) and floor(a(n)/5) are both squares; i.e., squares which remain squares when written in base 5 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 49, 81, 324, 2209, 15129, 25921, 103684, 710649, 4870849, 8346321, 33385284, 228826129, 1568397609, 2687489281, 10749957124, 73681302249, 505019158609, 865363202001, 3461452808004
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0. - M. F. Hasler, Jan 15 2012

Examples

			a(4) = 49 because 49 = 7^2 = 144 base 5 and 14 base 5 = 9 = 3^2.
		

Crossrefs

For analogs in other bases see A055792 (base 2), A055793 (base 3), A055808 (base 4), A055851 (base 6), A204517 (base 7), A204512 (base 8), A204503 (base 9) and A023110 (base 10).
Squares of A204520. The square roots of floor[a(n)/5] are given in A204521.

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(n^2,","))  \\ M. F. Hasler, Jan 15 2012

Formula

Empirical g.f.: -x^2*(9*x^11 +49*x^10 +324*x^9 +81*x^8 -698*x^7 -698*x^6 -968*x^5 -242*x^4 +49*x^3 +9*x^2 +4*x +1) / ((x -1)*(x +1)*(x^2 -4*x -1)*(x^2 +1)*(x^2 +4*x -1)*(x^4 +18*x^2 +1)). - Colin Barker, Sep 15 2014

Extensions

More terms added and offset changed to 1 by M. F. Hasler, Jan 15 2012

A204514 Numbers such that floor(a(n)^2 / 8) is again a square.

Original entry on oeis.org

0, 1, 2, 3, 6, 17, 34, 99, 198, 577, 1154, 3363, 6726, 19601, 39202, 114243, 228486, 665857, 1331714, 3880899, 7761798, 22619537, 45239074, 131836323, 263672646, 768398401, 1536796802, 4478554083, 8957108166, 26102926097, 52205852194, 152139002499, 304278004998, 886731088897
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square, with its last base-8 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 8.)
See A204504 for the squares resulting from truncation of a(n)^2, and A204512 for their square roots. - M. F. Hasler, Sep 28 2014

Crossrefs

Cf. A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Maple
    A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{0,6,0,-1},{0,1,2,3,6},40] (* Harvey P. Dale, Nov 23 2022 *)
  • PARI
    b=8;for(n=0,1e7,issquare(n^2\b) & print1(n","))
    
  • PARI
    A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))),n-1,x)

Formula

G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4).
a(n) = sqrt(A055872(n)). - M. F. Hasler, Sep 28 2014
a(2n) = A001541(n-1). a(2n+1) = A003499(n-1). - R. J. Mathar, Feb 05 2020

A031150 Appending a digit to n^2 gives another perfect square.

Original entry on oeis.org

1, 2, 4, 5, 6, 12, 18, 43, 80, 154, 191, 228, 456, 684, 1633, 3038, 5848, 7253, 8658, 17316, 25974, 62011, 115364, 222070, 275423, 328776, 657552, 986328, 2354785, 4380794, 8432812, 10458821, 12484830, 24969660, 37454490
Offset: 1

Views

Author

Keywords

Comments

Square root of 'Squares from A023110 with last digit removed'.
One could include an initial '0', and even list it with multiplicity 3 or 4, since 00, 01, 04 and 09 are all perfect squares: In analogy to corresponding sequences for other bases, this sequence could be defined as sqrt(floor[A023110/10]), see A204512 [base 8], A204517 (base 7), A204519 (base 6), A204521 [base 5], A001353 [base 3], A001542 [base 2]. (For bases 4 and 9, the corresponding sequence contains all integers.) - M. F. Hasler, Jan 16 2012

Examples

			5^2 = 25 and 16^2 = 256, so 5 is in the sequence.
115364^2 = 13308852496, 364813^2 = 133088524969.
		

References

  • R. K. Guy, Neg and Reg, preprint, Jan 2012.

Crossrefs

See A202303 for the resulting squares.

Programs

  • Maple
    for i from 1 to 150000 do if (floor(sqrt(10 * i^2 + 9)) > floor(sqrt(10 * i^2))) then print(i) end if end do;
  • Mathematica
    CoefficientList[Series[(x^10 + 2 x^9 + 4 x^8 + 5 x^7 + 18 x^6 + 12 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)/(x^14 - 38 x^7 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,38,0,0,0,0,0,0,-1},{1,2,4,5,6,12,18,43,80,154,191,228,456,684},40] (* Harvey P. Dale, Jun 09 2017 *)

Formula

G.f.: x*(x^10+2*x^9+4*x^8+5*x^7+18*x^6+12*x^5+6*x^4+5*x^3+4*x^2+2*x+1) / (x^14-38*x^7+1). - Colin Barker, Jan 30 2013

A204519 Square root of floor(A055851(n)/6).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 11, 20, 40, 109, 198, 396, 1079, 1960, 3920, 10681, 19402, 38804, 105731, 192060, 384120, 1046629, 1901198, 3802396, 10360559, 18819920, 37639840, 102558961, 186298002
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-6 analog of A031150 [base 10], A204512 [base 8], A204517 (base 7), A204521 [base 5], A001353 [base 3], A001542 [base 2]. For bases 4 and 9, the corresponding sequence contains all integers.

Crossrefs

Programs

  • Mathematica
    Sqrt[Floor[Select[Range[100000],IntegerQ[Sqrt[Quotient[#^2,6]]]&]^2/6]] (* Vaclav Kotesovec, Nov 26 2012 *)
  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))

Formula

Conjecture (for n>=8): a(n) = 10*a(n-3) - a(n-6). - Vaclav Kotesovec, Nov 26 2012
Empirical g.f.: x^4*(x^3+4*x^2+2*x+1) / (x^6-10*x^3+1). - Colin Barker, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Nov 26 2012

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014
Showing 1-8 of 8 results.