cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 118 results. Next

A291455 Number of ways to write 2*n+1 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 3*y + 5*z + 7*w, x^3 + 3*y^3 + 5*z^3 + 7*w^3 and x^7 + 3*y^7 + 5*z^7 + 7*w^7 are all prime.

Original entry on oeis.org

3, 2, 5, 1, 1, 2, 5, 1, 5, 3, 3, 3, 3, 4, 6, 2, 5, 1, 3, 2, 6, 3, 2, 1, 4, 4, 6, 4, 2, 6, 2, 5, 8, 3, 1, 3, 4, 10, 7, 1, 2, 5, 5, 4, 5, 2, 2, 6, 7, 4, 2, 1, 4, 4, 4, 2, 6, 9, 8, 2, 4, 7, 12, 3, 4, 2, 1, 6, 7, 1, 4, 5, 8, 4, 10, 2, 5, 3, 7, 3, 8, 7, 3, 4, 6, 2, 5, 10, 6, 7, 3, 8, 10, 7, 3, 5, 4, 5, 7, 1, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 24 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 3, 4, 7, 17, 23, 34, 39, 51, 66, 69, 99, 109, 115, 171, 191. Also, any integer n > 1 with gcd(n,42) = 1 can be written as x + 3*y + 5*z + 7*w with x,y,z,w nonnegative integers such that x^3 + 3*y^3 + 5*z^3 + 7*w^3 and x^7 + 3*y^7 + 5*z^7 + 7*w^7 are both prime.
(ii) Any positive odd integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 5*y + 9*z + 11*w, x^3 + 5*y^3 + 9*z^3 + 11*w^3 and x^5 + 5*y^5 + 9*z^5 + 11*w^5 are all prime. Also, any integer n > 1 with gcd(n,30) = 1 can be written as x + 5*y + 9*z + 11*w with x,y,z,w nonnegative integers such that x^3 + 5*y^3 + 9*z^3 + 11*w^3 and x^5 + 5*y^5 + 9*z^5 + 11*w^5 are both prime.
(iii) Let (k,m) be one of the ordered pairs (1,2), (1,4), (1,5), (1,9), (2,6), (3,5), (8,8). Then any positive odd integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x^k + 3*y^k + 5*z^k + 7*w^k and x^m + 3*y^m + 5*z^m + 7*w^m are both prime.
(iv) Any positive odd integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that p = x + 3*y + 5*z + 7*w and 2*p+1 (or p-4) are both prime.
(v) For each m = 1, 2, 4, any positive odd integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that p = x^m + 3*y^m + 5*z^m + 7*w^m and p+6 are both prime.
See also A290935 for a similar conjecture involving twin primes.

Examples

			a(4) = 1 since 2*4+1 = 0^2 + 2^2 + 2^2 + 1^2 with 0 + 3*2 + 5*2 + 7*1 = 23, 0^3 + 3*2^3 + 5*2^3 + 7*1^3 = 71 and 0^7 + 3*2^7 + 5*2^7 + 7*1^7 = 1031 all prime.
a(34) = 1 since 2*34+1 = 2^2 + 0^2 + 4^2 + 7^2 with 2 + 3*0 + 5*4 + 7*7 = 71, 2^3 + 3*0^3 + 5*4^3 + 7*7^3 = 2729 and 2^7 + 3*0^7 + 5*4^7 + 7*7^7 = 5846849 all prime.
a(66) = 1 since 2*66+1 = 4^2 + 6^2 + 9^2 + 0^2 with 4 + 3*6 + 5*9 + 7*0 = 67, 4^3 + 3*6^3 + 5*9^3 + 7*0^3 = 4357 and 4^7 + 3*6^7 + 5*9^7 + 7*0^7 = 24771037 all prime.
a(69) = 1 since 2*69+1 = 11^2 + 3^2 + 0^2 + 3^2 with 11 + 3*3 + 5*0 + 7*3 = 41, 11^3 + 3*3^3 + 5*0^3 + 7*3^3 = 1601 and 11^7 + 3*3^7 + 5*0^7 + 7*3^7 = 19509041 all prime.
a(191) = 1 since 2*191+1 = 11^2 + 6^2 + 1^2 + 15^2 with 11 + 3*6 + 5*1 + 7*15 = 139, 11^3 + 3*6^3 + 5*1^3 + 7*15^3 = 25609 and 11^7 + 3*6^7 + 5*1^7 + 7*15^7 = 1216342609 all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[m_,x_,y_,z_,w_]:=f[m,x,y,z,w]=x^m+3y^m+5z^m+7w^m;
    Do[r=0;Do[If[SQ[2n+1-x^2-y^2-z^2]&&PrimeQ[f[1,x,y,z,Sqrt[2n+1-x^2-y^2-z^2]]]&&PrimeQ[f[3,x,y,z,Sqrt[2n+1-x^2-y^2-z^2]]]&&PrimeQ[f[7,x,y,z,Sqrt[2n+1-x^2-y^2-z^2]]],r=r+1],{x,0,Sqrt[2n+1]},{y,0,Sqrt[2n+1-x^2]},{z,0,Sqrt[2n+1-x^2-y^2]}];Print[n," ",r],{n,0,100}]

A307561 Numbers k such that both 6*k - 1 and 6*k + 5 are prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 14, 17, 18, 22, 28, 29, 32, 38, 39, 42, 43, 44, 52, 58, 59, 64, 74, 77, 84, 93, 94, 98, 99, 107, 108, 109, 113, 137, 143, 147, 157, 158, 162, 163, 169, 182, 183, 184, 197, 198, 203, 204, 213, 214, 217, 227, 228, 238, 239, 247, 248, 249, 259, 267, 268, 269, 312, 317, 318, 329, 333, 344
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 146 terms below 10^3, 831 terms below 10^4, 5345 terms below 10^5, 37788 terms below 10^6 and 280140 terms below 10^7.
Prime pairs differing by 6 are called "sexy" primes. Other prime pairs with difference 6 are of the form 6n + 1 and 6n + 7.
Numbers in this sequence are those which are not 6cd + c - d - 1, 6cd + c - d, 6cd - c + d - 1 or 6cd - c + d, that is, they are not (6c - 1)d + c - 1, (6c - 1)d + c, (6c + 1)d - c - 1 or (6c + 1)d - c.

Examples

			a(2) = 2, so 6(2) - 1 = 11 and 6(2) + 5 = 17 are both prime.
		

Crossrefs

Primes differing from each other by 6 are A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A059325.
Cf. also A307562, A307563.

Programs

  • Mathematica
    Select[Range[500], PrimeQ[6# - 1] && PrimeQ[6# + 5] &] (* Alonso del Arte, Apr 14 2019 *)
  • PARI
    is(k) = isprime(6*k-1) && isprime(6*k+5); \\ Jinyuan Wang, Apr 20 2019

A307562 Numbers k such that both 6*k + 1 and 6*k + 7 are prime.

Original entry on oeis.org

1, 2, 5, 6, 10, 11, 12, 16, 17, 25, 26, 32, 37, 45, 46, 51, 55, 61, 62, 72, 76, 90, 95, 100, 101, 102, 121, 122, 125, 137, 142, 146, 165, 172, 177, 181, 186, 187, 205, 215, 216, 220, 237, 241, 242, 247, 257, 270, 276, 277, 282, 290, 291, 292, 296, 297, 310, 311, 312, 331, 332, 335, 347, 355, 356, 380, 381, 390
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 138 such numbers between 1 and 1000.
Prime pairs that differ by 6 are called "sexy" primes. Other prime pairs that differ by 6 are of the form 6n - 1 and 6n + 5.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd - c - d, 6cd + c + d - 1 or 6cd + c + d, that is, they are not (6c - 1)d - c - 1, (6c - 1)d - c, (6c + 1)d + c - 1 or (6c + 1)d + c.

Examples

			a(3) = 5, so 6(5) + 1 = 31 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

For the primes see A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024899 and A153218.
Cf. also A307561, A307563.

Programs

  • Mathematica
    Select[Range[400], AllTrue[6 # + {1, 7}, PrimeQ] &] (* Michael De Vlieger, Apr 15 2019 *)
  • PARI
    isok(n) = isprime(6*n+1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A103576 Concatenations of pairs of primes that differ by 1000000.

Original entry on oeis.org

31000003, 371000037, 1511000151, 1931000193, 1991000199, 2111000211, 3131000313, 3671000367, 3971000397, 4091000409, 4571000457, 5411000541, 5471000547, 5771000577, 6191000619, 6911000691, 8291000829, 8591000859
Offset: 1

Views

Author

Jonathan Vos Post, Mar 23 2005

Keywords

Comments

After the first element, 31000003, which is prime, integers in this sequence can never be prime, as they are all multiples of 3. They can be semiprimes, as is the case for 3671000367 = 3 x 1223666789, 4571000457 = 3 x 1523666819, 5411000541 = 3 x 1803666847, 9071000907 = 3 x 3023666969.

Examples

			Prime(47) = 211 and 211 + 1000000 = Prime(78515) = 1000211. Concatenating these two primes gives 2111000211 = 3^4 * 17^2 * 31 * 2909.
		

Crossrefs

Formula

a(n) = Concatenate(P, P+1000000) iff P prime and P+1000000 prime.

A103617 Concatenations of pairs of primes that differ by 10^9.

Original entry on oeis.org

71000000007, 971000000097, 1031000000103, 1811000000181, 2231000000223, 2411000000241, 2711000000271, 3491000000349, 4091000000409, 4331000000433, 4391000000439, 6071000000607, 6131000000613, 7871000000787, 8291000000829
Offset: 1

Views

Author

Jonathan Vos Post, Mar 25 2005

Keywords

Comments

Integers in this sequence can never be prime, as they are all multiples of 3. They can be semiprimes, as is the case for Prime(42) concatenated with Prime(50847544) = 1811000000181 = 3 x 603666666727.

Examples

			181 is prime, 181+10^9 = 1000000181 is prime, so their concatenation is an element of this sequence: 1811000000181. Coincidentally, prime(181)+10^9 = 1000001087 is also prime.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[Join[IntegerDigits[#],IntegerDigits[#+10^9]]]&/@Select[Prime[ Range[ 200]],PrimeQ[ #+ 10^9]&] (* Harvey P. Dale, May 14 2022 *)

Formula

a(n) = Concatenate(P, P+1000000000) iff P prime and P+1000000000 prime.

A104010 Sum of two successive sexy primes.

Original entry on oeis.org

16, 20, 28, 32, 40, 52, 68, 80, 88, 100, 112, 128, 140, 152, 172, 200, 208, 212, 220, 268, 308, 320, 340, 352, 388, 392, 452, 460, 472, 508, 520, 532, 548, 560, 620, 628, 668, 700, 712, 740, 752, 772, 872, 892, 920, 928, 1012, 1088, 1120, 1132, 1148, 1180, 1192
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 31 2005

Keywords

Crossrefs

Programs

Formula

a(n)= A023201(n)+A046117(n) = 2*A087695(n). [From R. J. Mathar, Nov 26 2008]

Extensions

20 added, 84 removed, extended by R. J. Mathar, Nov 26 2008

A104037 Numbers of primes between two sexy primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 31 2005

Keywords

Crossrefs

Cf. A023201 (sexy primes), A046117.

Programs

  • Maple
    p:=1: q:= 0: r:= 1: s:= 1: count:= 0: Res:= NULL:
    while count < 100 do
      t:= charfcn[{true}](isprime(p+6));
      if t=1 and q=1 then
         count:= count + 1;
         Res:= Res, r+s;
      fi;
      p:= p+2;
      q:= r; r:= s; s:= t;
    od:
    Res; # Robert Israel, Jun 23 2019

Extensions

Corrected and extended by Robert Israel, Jun 23 2019

A187758 Number of ways to write n=x+y (x,y>0) with 2x-3, 2x+3, 6y+1 and 6y+5 all prime.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 4, 2, 2, 3, 3, 3, 2, 3, 3, 4, 5, 3, 6, 5, 4, 6, 3, 5, 4, 3, 6, 2, 4, 5, 5, 4, 4, 6, 5, 4, 6, 5, 4, 5, 7, 5, 2, 3, 6, 4, 5, 4, 5, 7, 6, 9, 5, 4, 9, 5, 4, 5, 5, 4, 5, 6, 3, 8, 5, 8, 8, 3, 7, 5, 3, 5, 3, 5, 4, 9, 6, 4, 9, 7, 5, 8, 7, 8, 6, 9, 8, 2, 7, 7, 5, 6, 2, 10, 6, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 03 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>4.
This has been verified for n up to 10^8. It implies that there are infinitely many cousin primes and also infinitely many sexy primes.

Examples

			a(5)=1 since 5=4+1 with 2*4-3, 2*4+3, 6*1+1 and 6*1+5 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[2k-3]==True&&PrimeQ[2k+3]==True&&PrimeQ[6(n-k)+1]==True&&PrimeQ[6(n-k)+5]==True,1,0],{k,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]

A219966 Number of ways to write n=p+q+(n mod 2)q with q<=n/2 and p, q, q+6 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 2, 3, 3, 2, 1, 4, 3, 1, 4, 3, 1, 4, 2, 3, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 4, 5, 2, 1, 5, 3, 2, 4, 1, 1, 5, 4, 4, 4, 3, 2, 5, 3, 2, 4, 3, 4, 5, 3, 4, 6, 3, 3, 6, 3, 3, 8, 5, 2, 6, 3, 4, 6, 2, 2, 9, 5, 3, 5, 4, 2, 6, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 02 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>11.
This conjecture is stronger than Goldbach's conjecture and Lemoine's conjecture. It can be further strengthened; see A219055 and the comments there.

Examples

			a(19)=1 since 19=5+2*7 with 5, 7, 7+6 all prime.
a(20)=1 since 20=13+7 with 13, 7, 7+6 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[Prime[k]+6]==True&&PrimeQ[n-(1+Mod[n,2])Prime[k]]==True,1,0],{k,1,PrimePi[n/2]}]
    Do[Print[n," ",a[n]],{n,1,10000}]

A220951 Primes p such that p+6 is also prime and there is a power of two in the interval (p,p+6).

Original entry on oeis.org

5, 7, 11, 13, 31, 61, 251, 4093
Offset: 1

Views

Author

Brad Clardy, Feb 20 2013

Keywords

Comments

A search for sexy primes bracketing a power of two was conducted up to 2^1500. It is conjectured that this is a finite sequence.
On the basis of existing work about primes of the form 2^n+k and 2^n-k, plus a few additional tests, we have a(9) > 2^750740. - Giovanni Resta, Feb 21 2013

Crossrefs

Programs

Previous Showing 61-70 of 118 results. Next