cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A347731 Number of compositions (ordered partitions) of n into at most 3 triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 3, 3, 7, 2, 7, 5, 6, 4, 7, 9, 3, 12, 1, 9, 11, 6, 8, 8, 9, 8, 13, 2, 11, 13, 12, 6, 11, 9, 6, 20, 5, 14, 12, 9, 12, 11, 12, 11, 16, 9, 11, 20, 6, 10, 27, 6, 12, 9, 12, 20, 17, 15, 8, 23, 9, 13, 14, 11, 21, 23, 9, 8, 23, 15, 18, 17, 12, 15
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2021

Keywords

Crossrefs

A347732 Number of compositions (ordered partitions) of n into at most 4 triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 6, 5, 9, 7, 11, 14, 8, 21, 12, 20, 19, 21, 25, 20, 37, 13, 41, 30, 29, 44, 27, 44, 41, 50, 27, 57, 48, 50, 59, 45, 52, 60, 77, 34, 85, 57, 66, 83, 54, 79, 72, 93, 61, 92, 84, 66, 111, 90, 74, 121, 72, 80, 127, 99, 105, 95, 129, 89, 130, 95
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2021

Keywords

Crossrefs

A224679 Number of compositions of n^2 into sums of positive triangular numbers.

Original entry on oeis.org

1, 1, 3, 25, 546, 28136, 3487153, 1038115443, 742336894991, 1275079195875471, 5260826667789867957, 52137661179700350278531, 1241165848412448464485760897, 70972288312605764017275784402928, 9748291749334923037419108242002717050
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local i; if n=0 then 1 else 0;
          for i while i*(i+1)/2<=n do %+b(n-i*(i+1)/2) od; %  fi
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    b[n_] := b[n] = Module[{i, j = If[n == 0, 1, 0]}, For[i = 1, i(i+1)/2 <= n, i++, j += b[n-i(i+1)/2]]; j];
    a[n_] := b[n^2];
    a /@ Range[0, 20] (* Jean-François Alcover, Nov 04 2020, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/(1-sum(r=1,n+1, x^(r*(r+1)/2)+x*O(x^(n^2)))), n^2)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = A023361(n^2), where A023361(n) = number of compositions of n into positive triangular numbers.
a(n) = [x^(n^2)] 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)).

A282502 Expansion of 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 315, 445, 626, 879, 1236, 1741, 2452, 3450, 4852, 6826, 9608, 13524, 19032, 26778, 37680, 53027, 74627, 105017, 147776, 207949, 292636, 411813, 579515, 815499, 1147585, 1614917, 2272566, 3198016, 4500318, 6332952, 8911902, 12541080
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into centered triangular numbers (A005448).
Conjecture: every number > 1 is the sum of at most 5 centered triangular numbers.

Examples

			a(7) = 5 because we have [4, 1, 1, 1], [1, 4, 1, 1], [1, 1, 4, 1], [1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).
a(n) ~ c / r^n, where r = 0.71061790420456638132596657780064392952867377958... is the root of the equation r^(5/8)*EllipticTheta(2, 0, r^(3/2)) = 2 and c = 0.478786567198436133936216342628844283927491282611910379922933700360643... . - Vaclav Kotesovec, Feb 17 2017

A303668 Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 19, 30, 46, 71, 111, 172, 266, 413, 640, 991, 1537, 2383, 3692, 5722, 8869, 13745, 21303, 33018, 51172, 79308, 122917, 190503, 295251, 457597, 709207, 1099165, 1703546, 2640245, 4091988, 6341979, 9829132, 15233702, 23609994, 36592010, 56712212, 87895562
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Comments

Partial sums of A023361.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n))
        end:
    a:= proc(n) option remember;
          `if`(n<0, 0, b(n)+a(n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]]

Formula

G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))).

A347733 Number of compositions (ordered partitions) of n into at most 5 triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 9, 17, 16, 24, 28, 26, 47, 31, 59, 51, 60, 75, 67, 103, 66, 130, 89, 124, 147, 104, 181, 140, 188, 157, 213, 185, 224, 255, 192, 280, 257, 299, 255, 352, 266, 368, 384, 284, 437, 353, 456, 387, 475, 416, 466, 570, 414, 576, 562, 495
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2021

Keywords

Crossrefs

A347734 Number of compositions (ordered partitions) of n into at most 6 triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 10, 15, 17, 31, 30, 48, 56, 62, 97, 80, 141, 121, 165, 193, 189, 276, 220, 359, 280, 408, 424, 391, 590, 449, 673, 588, 727, 719, 825, 919, 820, 1127, 949, 1221, 1168, 1316, 1274, 1539, 1550, 1457, 1913, 1546, 2097, 1891, 2114, 2101, 2316
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2021

Keywords

Crossrefs

A106332 Decimal expansion of the constant x that satisfies: 1 = Sum_{n>=1} x^(n*(n+1)/2).

Original entry on oeis.org

6, 4, 5, 2, 2, 2, 7, 0, 3, 2, 3, 6, 0, 2, 0, 9, 7, 9, 1, 3, 4, 2, 5, 1, 6, 6, 3, 9, 4, 4, 0, 2, 6, 3, 3, 2, 2, 5, 4, 7, 2, 7, 4, 4, 3, 6, 4, 0, 5, 7, 1, 2, 2, 1, 0, 7, 4, 2, 2, 0, 1, 8, 3, 9, 0, 1, 3, 6, 5, 4, 6, 7, 1, 5, 7, 3, 9, 6, 4, 9, 9, 7, 2, 0, 1, 4, 4, 6, 9, 3, 6, 9, 3, 5, 0, 0, 2, 6, 6, 1, 3, 4, 5, 5, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

Equals the radius of convergence of the g.f. of A023361 (number of compositions into sums of triangular numbers).

Examples

			1 = x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 + ...
x = 0.6452227032360209791342516639440263322547274436405712210742201839013654671
		

Crossrefs

Cf. A023361.

Programs

  • Mathematica
    x /. FindRoot[ EllipticTheta[2, 0, Sqrt[x]] == 4*x^(1/8), {x, 1/2}, WorkingPrecision -> 110] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    solve(x=0.6,0.7,1-sum(n=1,60,x^(n*(n+1)/2)))

A238870 Number of compositions of n with c(1) = 1, c(i+1) - c(i) <= 1, and c(i+1) - c(i) != 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 2, 1, 4, 4, 4, 9, 10, 11, 21, 25, 30, 51, 62, 80, 125, 157, 208, 309, 399, 536, 772, 1013, 1373, 1938, 2574, 3503, 4882, 6540, 8918, 12329, 16611, 22672, 31183, 42182, 57588, 78952, 107092, 146202, 200037, 271831, 371057, 507053, 689885, 941558, 1285655, 1750672, 2388951, 3260459, 4442179, 6060948
Offset: 0

Views

Author

Joerg Arndt, Mar 09 2014

Keywords

Comments

Number of fountains of n coins with at most two successive coins on the same level.

Examples

			The a(10) = 4 such compositions are:
:
:   1:  [ 1 2 1 2 1 2 1 ]  (composition)
:
:  o o o
: ooooooo   (rendering as composition)
:
:     O   O   O
:    O O O O O O O  (rendering as fountain of coins)
:
:
:   2:  [ 1 2 1 2 3 1 ]
:
:     o
:  o oo
: oooooo
:
:           O
:      O   O O
:     O O O O O O
:
:
:   3:  [ 1 2 3 1 2 1 ]
:
:   o
:  oo o
: oooooo
:
:       O
:      O O   O
:     O O O O O O
:
:
:   4:  [ 1 2 3 4 ]
:
:    o
:   oo
:  ooo
: oooo
:
:         O
:        O O
:       O O O
:      O O O O
:
		

Crossrefs

Cf. A005169 (fountains of coins), A001524 (weakly unimodal fountains of coins).
Cf. A186085 (1-dimensional sandpiles), A227310 (rough sandpiles).
Cf. A023361 (fountains of coins with all valleys at lowest level).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          `if`(i=j, 0, b(n-j, j)), j=1..min(n, i+1)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, b[n-j, j]], {j, 1, Min[n, i+1]}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
  • Sage
    # translation of the Maple program by Alois P. Heinz
    @CachedFunction
    def F(n, i):
        if n == 0: return 1
        return sum( (i!=j) * F(n-j, j) for j in [1..min(n,i+1)] ) # A238870
    #    return sum( F(n-j, j) for j in [1, min(n,i+1)] ) # A005169
    def a(n): return F(n, 0)
    print([a(n) for n in [0..50]])
    # Joerg Arndt, Mar 20 2014

Formula

a(n) ~ c / r^n, where r = 0.733216317061133379740342579187365700397652443391231594... and c = 0.172010618097928709454463097802313209201440229976513439... . - Vaclav Kotesovec, Feb 17 2017

A331919 Number of compositions (ordered partitions) of n into distinct tetrahedral numbers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 6, 0, 0, 6, 25, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 6, 0, 0, 6, 24, 0, 0, 0, 0, 2, 7, 2, 0, 6, 26, 6, 0, 0, 0, 6, 26, 6, 0, 24, 126, 24, 0, 0, 0, 0, 2, 6, 0, 0, 6, 24, 0, 0, 1, 2, 6, 24, 2, 6, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2020

Keywords

Examples

			a(15) = 6 because we have [10, 4, 1], [10, 1, 4], [4, 10, 1], [4, 1, 10], [1, 10, 4] and [1, 4, 10].
		

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    G:= mul(1+t*x^(i*(i+1)*(i+2)/6), i=1..floor((6*N)^(1/3))):
    F:= proc(n) local R, k, v;
      R:= coeff(G, x, n);
      add(k!*coeff(R, t, k), k=1..degree(R, t))
    end proc:
    F(0):= 1:
    map(F, [$0..N]); # Robert Israel, Feb 03 2020
  • Mathematica
    M = 100;
    G = Product[1 + t x^(i(i+1)(i+2)/6), {i, 1, Floor[(6M)^(1/3)]}];
    F[n_] := Module[{R, k, v}, R = Coefficient[G, x, n]; Sum[k! Coefficient[R, t, k], {k, 1, Exponent[R, t]}]];
    F[0] = 1;
    F /@ Range[0, M] (* Jean-François Alcover, Jun 20 2020, after Robert Israel *)
Previous Showing 11-20 of 34 results. Next