cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A258351 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 141, 354, 996, 2720, 7194, 18306, 46154, 115506, 288195, 713210, 1749732, 4253148, 10259302, 24573390, 58491312, 138371354, 325415727, 760899396, 1769420183, 4093054602, 9420739965, 21578842582, 49199229066, 111672215658, 252381169048
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(79/600) / (2^(21/200) * sqrt(5*Pi) * n^(379/600)) * exp(2*Zeta'(-1) + 3*Zeta(3)/(4*Pi^2) - Pi^16 / (518400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3) + (-Pi^12 / (1800000 * 2^(3/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(3/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(1/5) * 3^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(1/5) * (3*Zeta(5))^(2/5))) * n^(2/5) - Pi^4 / (30 * 2^(4/5) * (3*Zeta(5))^(3/5)) * n^(3/5) + 5 * (3*Zeta(5))^(1/5) / 2^(7/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A343283 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(k^3).

Original entry on oeis.org

1, 8, 27, 100, 125, 432, 343, 1144, 1107, 2000, 1331, 6156, 2197, 5488, 6750, 12906, 4913, 20520, 6859, 28500, 18522, 21296, 12167, 80136, 23500, 35152, 43020, 78204, 24389, 135000, 29791, 141848, 71874, 78608, 85750, 320760, 50653, 109744, 118638, 371000, 68921, 370440, 79507
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2021

Keywords

Crossrefs

A300975 a(n) = [x^n] Product_{k>=1} 1/(1 - x^(k^3))^n.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6443, 24391, 92928, 355862, 1368458, 5280744, 20438148, 79302960, 308385355, 1201536286, 4689450021, 18330233110, 71747534460, 281177705490, 1103163479190, 4332522733560, 17031238725410, 67007449610751, 263841039245280, 1039628691988795
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2018

Keywords

Comments

Number of partitions of n into cubes of n kinds.

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n, i)
          option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(m+j-1, j)*b(n-i^3*j, i-1), j=0..n/i^3)))
          end: b(n, iroot(n, 3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k^3)^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.0147940395164236614815683662796167488... and c = 0.2726202310726337579308600184572222... - Vaclav Kotesovec, Mar 23 2018

A304460 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^3).

Original entry on oeis.org

1, 1, 44, 4410, 905840, 318906400, 172185088824, 132357574570221, 137406570363495360, 185242628827767255255, 314645673306845990409300, 657405676947400829561901359, 1656968286301847988118098735168, 4957425610652588047512198547937050
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2018

Keywords

Comments

In general, for m>=3, coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^m) is asymptotic to n^(m*n)/n!.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-x^k)^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[1/QPochhammer[x]^(n^3), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A328408 G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + 4*x + x^2) / (1 - x)^4.

Original entry on oeis.org

1, 9, 27, 73, 125, 243, 343, 585, 729, 1125, 1331, 1971, 2197, 3087, 3375, 4681, 4913, 6561, 6859, 9125, 9261, 11979, 12167, 15795, 15625, 19773, 19683, 25039, 24389, 30375, 29791, 37449, 35937, 44217, 42875, 53217, 50653, 61731, 59319, 73125, 68921, 83349, 79507, 97163, 91125
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else IsOdd(n) select n^3 else Self(n div 2)+n^3 :n in [1..45]]; // Marius A. Burtea, Oct 15 2019
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^(2^k) (1 + 4 x^(2^k) + x^(2^(k + 1)))/(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n^3, n^3]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^3 &], {n, 1, 45}]
    f[p_, e_] :=p^(3*e); f[2, e_] := (8^(e+1)-1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)

Formula

G.f.: Sum_{k>=0} x^(2^k) * (1 + 4*x^(2^k) + x^(2^(k+1))) / (1 - x^(2^k))^4.
G.f.: (1/7) * Sum_{k>=1} J_3(2*k) * x^k / (1 - x^k), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) / (1 - 2^(-s)).
a(2*n) = a(n) + 8*n^3, a(2*n+1) = (2*n + 1)^3.
a(n) = Sum_{d|n} A209229(n/d) * d^3.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023872.
Sum_{k=1..n} a(k) ~ 4*n^4/15. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (8^(e+1)-1)/7, and a(p^e) = p^(3*e) for an odd prime p. - Amiram Eldar, Oct 23 2023

A287090 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).

Original entry on oeis.org

1, 1, 10, 46, 191, 740, 2912, 10941, 40345, 144703, 509693, 1761738, 5993434, 20076668, 66329914, 216307961, 696990583, 2220665661, 7000973556, 21853019072, 67575353580, 207111103623, 629440843762, 1897670845715, 5677604053474, 16863081962184, 49736388996376, 145714874857754
Offset: 0

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

Euler transform of A000537.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)^2/4), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).
a(n) ~ exp(-Zeta(3) / (16*Pi^2) + 741*Zeta(5) / (1600*Pi^4) - 250047*Zeta(5)^3 / (5*Pi^14) + 10207918728 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/2 + (-7*(7/2)^(1/6) * Pi / (3200 * 3^(2/3)) + 9261 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^2 / (40*Pi^9) - 22754277 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^4 / (2*Pi^19)) * n^(1/6) + (-21 * 3^(2/3) * (7/2)^(1/3) * Zeta(5) / (20*Pi^4) + 31752 * 6^(2/3) * 7^(1/3) * Zeta(5)^3/Pi^14) * n^(1/3) + (sqrt(7/2)*Pi/60 - 567*sqrt(14)*Zeta(5)^2 / Pi^9) * sqrt(n) + 9 * 3^(1/3) * (7/2)^(2/3) * Zeta(5) / Pi^4 * n^(2/3) + 2 * (2/7)^(1/6) * 3^(2/3) * Pi/5 * n^(5/6)) / (2^(1321/1440) * 3^(479/720) * 7^(119/1440) * n^(839/1440) * Pi^(1/240)). - Vaclav Kotesovec, Nov 09 2017

A381709 Euler transform of n^3 * A065960(n).

Original entry on oeis.org

1, 1, 137, 2351, 29075, 408429, 5957562, 76590384, 955079422, 11831378688, 142650905559, 1668991927795, 19144774189917, 215790313316371, 2388025355854986, 25973791505651972, 278176027053878678, 2936495245822593766, 30573379794788083289, 314185573464039742503
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 4)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^(k^3 * A065960(k)).
G.f.: exp( Sum_{k>=1} sigma_4(k^2) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_4(k^2) * a(n-k).

A279761 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(2*k^2+1)/3).

Original entry on oeis.org

1, 1, 7, 26, 91, 290, 946, 2922, 8937, 26521, 77485, 222005, 626988, 1743739, 4787625, 12979799, 34792728, 92257673, 242197348, 629805075, 1623197726, 4148192991, 10516418844, 26458470616, 66086152465, 163925621199, 403931474096, 989040788801, 2407020523315, 5823830868091, 14011949899801, 33530477120905, 79820957945103
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2016

Keywords

Comments

Euler transform of the octahedral numbers (A005900).

Crossrefs

Programs

  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (2 k^2 + 1)/3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(2*k^2+1)/3).
a(n) ~ exp(Zeta'(-1)/3 - Zeta(3)^2 / (360*Zeta(5)) + 2*Zeta'(-3)/3 + (Zeta(3)/(6*2^(3/5) * Zeta(5)^(2/5))) * n^(2/5) + (5*(Zeta(5)/2)^(1/5)/2) * n^(4/5)) * Zeta(5)^(47/450) / (2^(37/450) * sqrt(5*Pi) * n^(136/225)). - Vaclav Kotesovec, Nov 09 2017

A279762 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k^2-5*k+2)/2).

Original entry on oeis.org

1, 1, 13, 61, 263, 1094, 4578, 18076, 69815, 262242, 965342, 3480006, 12322360, 42896002, 147062818, 497000146, 1657470977, 5459160063, 17772284155, 57225458626, 182362100816, 575463112191, 1799106136923, 5575063264825, 17130798464652, 52216240087807, 157937816918539, 474197830869573, 1413695306175884, 4185962563381518
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2016

Keywords

Comments

Euler transform of the icosahedral numbers (A006564).

Crossrefs

Programs

  • Mathematica
    nmax=29; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k^2 - 5 k + 2)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k^2-5*k+2)/2).
a(n) ~ exp(Zeta'(-1) + 5*Zeta(3) / (8*Pi^2) - Pi^16 / (16796160000*Zeta(5)^3) + Pi^8 * Zeta(3) / (648000*Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + 5*Zeta'(-3)/2 + (-Pi^12/(19440000 * 2^(2/5) * 15^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (21600 * 2^(4/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(4/5) * (15*Zeta(5))^(2/5))) * n^(2/5) + (-Pi^4 / (36 * 2^(1/5) * (15*Zeta(5))^(3/5))) * n^(3/5) + ((5*(15*Zeta(5))^(1/5)) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(9/80) / (2^(11/40) * 5^(31/80) * sqrt(Pi) * n^(49/80)). - Vaclav Kotesovec, Nov 09 2017

A279763 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)*(3*k-2)/2).

Original entry on oeis.org

1, 1, 21, 105, 535, 2670, 12996, 59546, 266875, 1161894, 4939778, 20528320, 83636061, 334496221, 1315381029, 5091782355, 19424086781, 73092029218, 271537720562, 996656173345, 3616680935702, 12983391870459, 46133749660407, 162337625047433, 565962994479384, 1955721907216420, 6701061533668542, 22774651422340672
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2016

Keywords

Comments

Euler transform of the dodecahedral numbers (A006566).

Crossrefs

Programs

  • Mathematica
    nmax=27; CoefficientList[Series[Product[1/(1 - x^k)^(k (3 k - 1) (3 k - 2)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)*(3*k-2)/2).
a(n) ~ exp(Zeta'(-1) + 9*Zeta(3) / (8*Pi^2) - Pi^16 / (9331200000*Zeta(5)^3) + Pi^8 * Zeta(3) / (648000*Zeta(5)^2) - Zeta(3)^2 / (270*Zeta(5)) + 9*Zeta'(-3)/2 + (-Pi^12/(10800000 * 2^(2/5) * 3^(3/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * 3^(3/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * 3^(1/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(4/5) * 3^(6/5) * Zeta(5)^(2/5))) * n^(2/5) + (-Pi^4 / (60 * 2^(1/5) * 3^(4/5) * Zeta(5)^(3/5))) * n^(3/5) + ((5*3^(3/5) * Zeta(5)^(1/5)) / 2^(8/5)) * n^(4/5)) * 3^(131/400) * Zeta(5)^(131/1200) / (2^(169/600) * sqrt(5*Pi) * n^(731/1200)). - Vaclav Kotesovec, Nov 09 2017
Previous Showing 11-20 of 22 results. Next