cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A068916 Smallest positive integer that is equal to the sum of the n-th powers of its prime factors (counted with multiplicity).

Original entry on oeis.org

2, 16, 1096744, 3125, 256, 823543, 19683
Offset: 1

Views

Author

Dean Hickerson, Mar 07 2002

Keywords

Comments

Does a(n) exist for all n?
a(12)=65536, a(27)=4294967296. a(n) exists for all n of the form n=p^i-i, where p is prime and i > 0, since p^p^i is an example (see A067688 and A081177). - Jud McCranie, Mar 16 2003
a(23) <= 298023223876953125. a(24) <= 7625597484987. - Jud McCranie, Jan 18 2016
a(10) = 285311670611. - Jud McCranie, Jan 25 2016
a(24) = 7625597484987. - Jud McCranie, Jan 30 2016

Examples

			a(3) = 1096744 = 2^3*11^3*103; the sum of the cubes of the prime factors is 3*2^3 + 3*11^3 + 103^3 = 1096744.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := For[x=1, True, x++, If[x==Plus@@(#[[2]]#[[1]]^n&/@FactorInteger[x]), Return[x]]]
  • PARI
    isok(k, n) = {my(f=factor(k)); sum(j=1, #f~, f[j,2]*f[j,1]^n) == k;}
    a(n) = {my(k = 1); while(! isok(k,n), k++); k;} \\ Michel Marcus, Jan 25 2016
    
  • Python
    from sympy import factorint
    def a(n):
      k = 1
      while True:
        f = factorint(k)
        if k == sum(f[d]*d**n for d in f): return k
        k += 1
    for n in range(1, 8):
      print(a(n), end=", ") # Michael S. Branicky, Feb 16 2021

A224420 Primes of the form 3^n - n.

Original entry on oeis.org

2, 7, 6553, 3486784381, 12157665459056928761, 41745579179292917813953351511015323088870709281977, 30432527221704537086371993251530170531786747066636939
Offset: 1

Views

Author

Alex Ratushnyak, Apr 06 2013

Keywords

Comments

The next term is too big to display. Corresponding n are given in A058037.

Crossrefs

Programs

  • Mathematica
    Select[Table[3^k - k, {k, 2, 200, 2}], PrimeQ] (* Bruno Berselli, Apr 07 2013 *)

A081116 Numbers k such that 17 divides 3^k-k.

Original entry on oeis.org

5, 29, 42, 75, 132, 134, 140, 152, 159, 162, 163, 201, 206, 215, 241, 256, 277, 301, 314, 347, 404, 406, 412, 424, 431, 434, 435, 473, 478, 487, 513, 528, 549, 573, 586, 619, 676, 678, 684, 696, 703, 706, 707, 745, 750, 759, 785, 800, 821, 845, 858, 891, 948
Offset: 1

Views

Author

Benoit Cloitre, Apr 16 2003

Keywords

Comments

Suggested by a problem in a web page by Hojoo Lee entitled "Challenging problems in number theory". However, the page no longer exists.

Crossrefs

Cf. A024024 (3^n-n).

Programs

  • Mathematica
    Select[Range[1000], PowerMod[3, #, 17] == Mod[#, 17] &] (* Amiram Eldar, May 14 2022 *)
  • PARI
    isok(n) = Mod(3, 17)^n == Mod(n, 17); \\ Michel Marcus, Dec 02 2013

Formula

a(n+1)-a(n) is the 16-periodic sequence (24, 13, 33, 57, 2, 6, 12, 7, 3, 1, 38, 5, 9, 26, 15, 21).
Previous Showing 11-13 of 13 results.