A120089 Square perimeters of primitive Pythagorean triangles.
144, 900, 3136, 8100, 17424, 23716, 33124, 43264, 54756, 57600, 93636, 115600, 139876, 144400, 166464, 174724, 207936, 213444, 244036, 298116, 304704, 357604, 414736, 422500, 476100, 490000, 541696, 571536, 640000, 722500, 746496, 756900
Offset: 1
Keywords
Links
Crossrefs
Cf. A120090.
Programs
-
Maple
isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : isA120089 := proc(an) RETURN( issqr(an) and isA024364(an)) ; end: for n from 2 to 1200 do if isA120089(n^2) then printf("%d,",n^2) ; fi ; od ; # R. J. Mathar, Jun 08 2006
-
Mathematica
A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[n/2^IntegerExponent[n, 2]]}]; Reap[For[k = 2, k <= 10^6, k += 2, If[A078926[k/2] > 0 && IntegerQ@Sqrt@k, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2023 *)
Formula
a(n) = (2*u*v)^2, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs (j,k),j>k with odd k such that pairs (u,v),u
Extensions
Corrected and extended by R. J. Mathar, Jun 08 2006
A155185 Primes in A155175.
5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1
Keywords
Comments
Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...
Crossrefs
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)
Extensions
Sequence corrected by Ray Chandler, Feb 11 2020
A322181 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) + A321769(n, k) + A321770(n, k).
12, 30, 70, 40, 56, 176, 126, 208, 408, 198, 154, 234, 84, 90, 330, 260, 546, 1026, 476, 456, 736, 286, 418, 1218, 828, 1178, 2378, 1188, 800, 1160, 390, 340, 900, 570, 644, 1364, 714, 374, 494, 144, 132, 532, 442, 1044, 1924, 874, 918, 1518, 608, 1116, 3196
Offset: 1
Comments
Examples
The first rows are: 12 30, 70, 40 56, 176, 126, 208, 408, 198, 154, 234, 84 T(1,1) corresponds to the perimeter of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 + 4 + 5 = 12.
Links
Programs
-
PARI
M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]]; T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] + t[2, 1] + t[3, 1])
A376608 Sides x < y < z of Pythagorean triangles ordered first by increasing perimeter x+y+z, then by shorter leg x.
3, 4, 5, 6, 8, 10, 5, 12, 13, 9, 12, 15, 8, 15, 17, 12, 16, 20, 7, 24, 25, 10, 24, 26, 15, 20, 25, 20, 21, 29, 18, 24, 30, 16, 30, 34, 12, 35, 37, 21, 28, 35, 9, 40, 41, 15, 36, 39, 24, 32, 40, 27, 36, 45, 14, 48, 50, 20, 48, 52, 24, 45, 51, 30, 40, 50, 28, 45, 53, 11, 60, 61, 33, 44, 55
Offset: 1
Examples
Triangle | Perimeter | x y z 1 12 [ 3, 4, 5] 2 24 [ 6, 8, 10] 3 30 [ 5, 12, 13] 4 36 [ 9, 12, 15] 5 40 [ 8, 15, 17] 6 48 [12, 16, 20] 7 56 [ 7, 24, 25] 8 60 [10, 24, 26] 9 60 [15, 20, 25] 10 70 [20, 21, 29]
A105521 Sums of area and perimeter of primitive Pythagorean triples.
18, 60, 100, 140, 270, 280, 294, 462, 648, 728, 756, 1078, 1080, 1210, 1496, 1530, 1584, 1768, 2028, 2090, 2574, 2772, 2860, 2990, 3150, 3588, 3910, 4550, 4624, 4680, 4950, 5434, 5670, 5984, 6498, 6960, 7140, 7548, 8330, 8398, 8432, 8436, 8820, 9568, 10098
Offset: 1
Links
- Douglas Butler, Table of Pythagorean triples up to 2100, Oundle School iCT Training Centre
- Ron Knott, Pythagorean triples.
Extensions
Corrected and extended by Harvey P. Dale, Oct 27 2018
A155186 Primes in A155171.
2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1
Keywords
Comments
Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.
Crossrefs
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst
A308378 Numbers k such that phi(2k+1) = phi(2k+2).
0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127
Offset: 1
Keywords
Comments
For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime.
For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1.
For n > 0, a(n) is congruent to 1 or 4 mod 6.
2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241.
2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235.
Examples
0 is a term because phi(1) = phi(2) = 1. 1 is a term because phi(3) = phi(4) = 2. 7 is a term because phi(15) = phi(16) = 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5416 (calculated using the b-file at A001274)
Crossrefs
Programs
-
Mathematica
Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *) Select[(#-1)/2&/@SequencePosition[EulerPhi[Range[900000]],{x_,x_}][[All,1]],IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *)
-
PARI
lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", "))); lista(430000)
Formula
a(n) = (A299535(n) - 2) / 2.
A328499 The number of primitive Pythagorean triangles with perimeter less than n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1
Comments
D. N. Lehmer has proved that the asymptotic density of a(n) is a(n)/n = log(2)/Pi^2 = 0.07023049... See A118858.
Examples
For n=90, the triples are {3, 4, 5}, 3 + 4 + 5 = 12 < 90 {5, 12, 13}, 5 + 12 + 13 = 30 < 90 {7, 24, 25}, 7 + 24 + 25 = 56 < 90 {8, 15, 17}, 8 + 15 + 17 = 40 < 90 {9, 40, 41}, 9 + 40 + 41 = 90 {12, 35, 37}, 12 + 35 + 37 = 84 < 90 {20, 21, 29}, 20 + 21 + 29 = 70 < 90 so a(90)=7.
Links
- Ron Knott, Pythagorean Triples and Online Calculators
- D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. 22, 293-335, 1900.
A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.
2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1
Keywords
Comments
p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...
Crossrefs
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
A223857 Ordered products of the perimeter and the sides of primitive Pythagorean triangles.
720, 23400, 81600, 235200, 852600, 1305360, 1328400, 5314320, 8414280, 9434880, 16893240, 18498480, 33918720, 43995600, 45561600, 46652760, 57757440, 106226640, 108617760, 154736400, 155263680, 184041000, 235227600, 361712400, 417740400, 451760400, 471711240
Offset: 1
Comments
Considering the set of primitive Pythagorean triangles with sides (A, B, C), the sequence gives the values (A+B+C)*(A*B*C), in increasing order.
It is a challenge to find a pair of primitive Pythagorean triangles such that product of perimeter and the sides is equal.
Examples
a(1) = (3+4+5)*(3*4*5) = 720. a(2) = (5+12+13)*(5*12*13) = 23400.
Links
- Wikipedia, Pythagorean Triples
Extensions
Corrected and extended by Giovanni Resta, Apr 03 2013
Comments