cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A120089 Square perimeters of primitive Pythagorean triangles.

Original entry on oeis.org

144, 900, 3136, 8100, 17424, 23716, 33124, 43264, 54756, 57600, 93636, 115600, 139876, 144400, 166464, 174724, 207936, 213444, 244036, 298116, 304704, 357604, 414736, 422500, 476100, 490000, 541696, 571536, 640000, 722500, 746496, 756900
Offset: 1

Views

Author

Lekraj Beedassy, Jun 07 2006

Keywords

Comments

Square entries of A024364.

Crossrefs

Cf. A120090.

Programs

  • Maple
    isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : isA120089 := proc(an) RETURN( issqr(an) and isA024364(an)) ; end: for n from 2 to 1200 do if isA120089(n^2) then printf("%d,",n^2) ; fi ; od ; # R. J. Mathar, Jun 08 2006
  • Mathematica
    A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[n/2^IntegerExponent[n, 2]]}];
    Reap[For[k = 2, k <= 10^6, k += 2, If[A078926[k/2] > 0 && IntegerQ@Sqrt@k, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2023 *)

Formula

a(n) = (2*u*v)^2, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs (j,k),j>k with odd k such that pairs (u,v),u
a(n) = A024364(k) = A000290(j) for some k and j. - R. J. Mathar, Jun 08 2006

Extensions

Corrected and extended by R. J. Mathar, Jun 08 2006

A155185 Primes in A155175.

Original entry on oeis.org

5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1

Author

Keywords

Comments

Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)

Extensions

Sequence corrected by Ray Chandler, Feb 11 2020

A322181 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) + A321769(n, k) + A321770(n, k).

Original entry on oeis.org

12, 30, 70, 40, 56, 176, 126, 208, 408, 198, 154, 234, 84, 90, 330, 260, 546, 1026, 476, 456, 736, 286, 418, 1218, 828, 1178, 2378, 1188, 800, 1160, 390, 340, 900, 570, 644, 1364, 714, 374, 494, 144, 132, 532, 442, 1044, 1924, 874, 918, 1518, 608, 1116, 3196
Offset: 1

Author

Rémy Sigrist, Nov 30 2018

Keywords

Comments

This sequence gives the perimeters of the primitive Pythagorean triangles corresponding to the primitive Pythagorean triples in the tree described in A321768.
If we order the terms in this sequence and keep duplicates then we obtain A024364.

Examples

			The first rows are:
   12
   30, 70, 40
   56, 176, 126, 208, 408, 198, 154, 234, 84
T(1,1) corresponds to the perimeter of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 + 4 + 5 = 12.
		

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] + t[2, 1] + t[3, 1])

Formula

Empirically:
- T(n, 1) = A002939(n+1),
- T(n, (3^(n-1) + 1)/2) = A001542(n+1),
- T(n, 3^(n-1)) = A033586(n).

A376608 Sides x < y < z of Pythagorean triangles ordered first by increasing perimeter x+y+z, then by shorter leg x.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 5, 12, 13, 9, 12, 15, 8, 15, 17, 12, 16, 20, 7, 24, 25, 10, 24, 26, 15, 20, 25, 20, 21, 29, 18, 24, 30, 16, 30, 34, 12, 35, 37, 21, 28, 35, 9, 40, 41, 15, 36, 39, 24, 32, 40, 27, 36, 45, 14, 48, 50, 20, 48, 52, 24, 45, 51, 30, 40, 50, 28, 45, 53, 11, 60, 61, 33, 44, 55
Offset: 1

Author

Hugo Pfoertner, Sep 29 2024

Keywords

Examples

			   Triangle
   |  Perimeter
   |       x   y   z
   1  12 [ 3,  4,  5]
   2  24 [ 6,  8, 10]
   3  30 [ 5, 12, 13]
   4  36 [ 9, 12, 15]
   5  40 [ 8, 15, 17]
   6  48 [12, 16, 20]
   7  56 [ 7, 24, 25]
   8  60 [10, 24, 26]
   9  60 [15, 20, 25]
  10  70 [20, 21, 29]
		

Crossrefs

A374597 uses this order of sides.

A105521 Sums of area and perimeter of primitive Pythagorean triples.

Original entry on oeis.org

18, 60, 100, 140, 270, 280, 294, 462, 648, 728, 756, 1078, 1080, 1210, 1496, 1530, 1584, 1768, 2028, 2090, 2574, 2772, 2860, 2990, 3150, 3588, 3910, 4550, 4624, 4680, 4950, 5434, 5670, 5984, 6498, 6960, 7140, 7548, 8330, 8398, 8432, 8436, 8820, 9568, 10098
Offset: 1

Author

Alexandre Wajnberg, May 02 2005

Keywords

Crossrefs

Extensions

Corrected and extended by Harvey P. Dale, Oct 27 2018

A155186 Primes in A155171.

Original entry on oeis.org

2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1

Author

Keywords

Comments

Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst

A308378 Numbers k such that phi(2k+1) = phi(2k+2).

Original entry on oeis.org

0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127
Offset: 1

Author

Torlach Rush, May 24 2019

Keywords

Comments

For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime.
For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1.
For n > 0, a(n) is congruent to 1 or 4 mod 6.
2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241.
2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235.

Examples

			0 is a term because phi(1) = phi(2) = 1.
1 is a term because phi(3) = phi(4) = 2.
7 is a term because phi(15) = phi(16) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *)
    Select[(#-1)/2&/@SequencePosition[EulerPhi[Range[900000]],{x_,x_}][[All,1]],IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", ")));
    lista(430000)

Formula

a(n) = (A299535(n) - 2) / 2.

A328499 The number of primitive Pythagorean triangles with perimeter less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Author

Mo Li, Oct 17 2019

Keywords

Comments

D. N. Lehmer has proved that the asymptotic density of a(n) is a(n)/n = log(2)/Pi^2 = 0.07023049... See A118858.

Examples

			For n=90, the triples are
   {3,  4,  5},  3 +  4 +  5 = 12 < 90
   {5, 12, 13},  5 + 12 + 13 = 30 < 90
   {7, 24, 25},  7 + 24 + 25 = 56 < 90
   {8, 15, 17},  8 + 15 + 17 = 40 < 90
   {9, 40, 41},  9 + 40 + 41 = 90
  {12, 35, 37}, 12 + 35 + 37 = 84 < 90
  {20, 21, 29}, 20 + 21 + 29 = 70 < 90
so a(90)=7.
		

Crossrefs

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst

A223857 Ordered products of the perimeter and the sides of primitive Pythagorean triangles.

Original entry on oeis.org

720, 23400, 81600, 235200, 852600, 1305360, 1328400, 5314320, 8414280, 9434880, 16893240, 18498480, 33918720, 43995600, 45561600, 46652760, 57757440, 106226640, 108617760, 154736400, 155263680, 184041000, 235227600, 361712400, 417740400, 451760400, 471711240
Offset: 1

Author

Mihir Mathur, Apr 02 2013

Keywords

Comments

Considering the set of primitive Pythagorean triangles with sides (A, B, C), the sequence gives the values (A+B+C)*(A*B*C), in increasing order.
It is a challenge to find a pair of primitive Pythagorean triangles such that product of perimeter and the sides is equal.

Examples

			a(1) = (3+4+5)*(3*4*5) = 720.
a(2) = (5+12+13)*(5*12*13) = 23400.
		

Crossrefs

Extensions

Corrected and extended by Giovanni Resta, Apr 03 2013
Previous Showing 21-30 of 32 results. Next