cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A355144 Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2022

Keywords

Examples

			T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Triangle T(n,k) begins:
       1;
       1;
       2;
       4,       1;
      10,       5;
      26,      26;
      76,     117,      10;
     232,     540,     105;
     764,    2445,     931;
    2620,   11338,    6909,    280;
    9496,   53033,   48546,   4900;
   35696,  253826,  324753,  64295;
  140152, 1235115, 2131855, 691075, 15400;
  ...
		

Crossrefs

Column k=0 gives A000085.
Row sums give A000110.
T(3n,n) gives A025035.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
         `if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 20 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]*
         Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A288785(n).

A360098 Square array read by antidiagonals upwards: T(n,k) is the number of ways of choosing nonnegative numbers for k n-sided dice, k >= 0, n >= 1, so that summing the faces can give any integer from 0 to n^k - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 7, 1, 105, 1, 1, 1, 1, 1, 1, 71, 1, 945, 1, 1, 1, 1, 1, 10, 1, 1001, 1, 10395, 1, 1, 1, 1, 1, 3, 280, 1, 18089, 1, 135135, 1, 1, 1, 1, 1, 7, 15, 15400, 1, 398959, 1
Offset: 1

Views

Author

William P. Orrick, Jan 25 2023

Keywords

Comments

T(n,k) depends on n only through its prime signature. (See A118914.) For example, for fixed k, T(p*q^2,k) will be the same for any pair of distinct primes p and q. Hence we may define T(n,k) = R(s(n),k), where s(n) is the prime signature of n.
Also the number of Krasner factorizations of (x^(n^k)-1) / (x-1) into k polynomials each having n nonzero terms all with coefficient +1. (Krasner and Ranulac, 1937)

Examples

			There are 3 ways to assign numbers to two 4-sided dice:
 {{0, 1, 2, 3}, {0, 4, 8, 12}},
 {{0, 1, 8, 9}, {0, 2, 4,  6}},
 {{0, 1, 4, 5}, {0, 2, 8, 10}}.
The northwest corner of T(n,k) begins:
  1   1    1    1       1          1             1 ...     (s(1)  = {})
  1   1    1    1       1          1             1 ...     (s(2)  = {1})
  1   1    1    1       1          1             1 ...     (s(3)  = {1})
  1   1    3   15     105        945         10395 ...     (s(4)  = {2})
  1   1    1    1       1          1             1 ...     (s(5)  = {1})
  1   1    7   71    1001      18089        398959 ...     (s(6)  = {1,1})
  1   1    1    1       1          1             1 ...     (s(7)  = {1})
  1   1   10  280   15400    1401400     190590400 ...     (s(8)  = {3})
  1   1    3   15     105        945         10395 ...     (s(9)  = {2})
  1   1    7   71    1001      18089        398959 ...     (s(10) = {1,1})
  1   1    1    1       1          1             1 ...     (s(11) = {1})
  1   1   42  3660 614040  169200360   69444920160 ...     (s(12) = {1,2})
  1   1    1    1       1          1             1 ...     (s(13) = {1})
  1   1    7   71    1001      18089        398959 ...     (s(14) = {1,1})
  1   1    7   71    1001      18089        398959 ...     (s(15) = {1,1})
  1   1   35 5775 2627625 2546168625 4509264634875 ...     (s(16) = {4})
  ...
		

Crossrefs

For rows of index n = p^j, p prime, or equivalently, for rows of signature {j} we have T(p^2,k) = R({2},k) = A001147(k), T(p^3,k) = R({3},k) = A025035(k), T(p^4,k) = R({4},k) = A025036(k), and, generally, T(p^j,k) = R({j},k) = the k-th element of the j-th column of the square array A060540.
For n = p * q, p and q distinct primes, we have T(p*q,k) = R({1,1},k) = |A002119(k)|.
Column correspondences are T(n,2) = A273013(n) and T(n,3) = A131514(n).
Cf. A118914.

Programs

  • SageMath
    @cached_function
    def r(i,M):
        kminus1 = len(M)
        u = tuple([1 for j in range(kminus1)])
        if i > 1 and M == u:
            return(1)
        elif M != u:
            divList = divisors(i)[:-1]
            return(sum(r(M[j],tuple(sorted(M[:j]+tuple([d])+M[j+1:]))) for d in divList for j in range(kminus1)))
    def T(n,k):
        if n == 1 or k == 0:
            return(1)
        else:
            return(r(n,tuple([n for j in range(k-1)]))) / factorial(k-1)

Formula

Use M to denote a (k-1)-element multiset of positive integers. Let U denote the (k-1)-element multiset whose elements all equal 1 and let N denote the (k-1)-element multiset whose elements all equal n. For i in M, let M_{i,j} denote the result of replacing i with j in M. Then T(1,k) = T(n,0) = 1, while for n > 1 and k > 0 we have T(n,k) = r(n,N) / (k-1)! where r(i,M) is given by the recurrence
r(i,U) = 1 for i > 1,
r(i,M) = Sum_{m in M} Sum_{d|i,d

A370347 Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 9, 0, 1, 252, 27, 0, 1, 14337, 1008, 54, 0, 1, 1327104, 71685, 2520, 90, 0, 1, 182407545, 7962624, 215055, 5040, 135, 0, 1, 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1, 8877242235393, 279255545568, 5107411260, 74317824, 1003590, 14112, 252, 0, 1
Offset: 0

Author

Alois P. Heinz, Feb 15 2024

Keywords

Examples

			T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
T(2,2) = 1: 123|456.
Triangle T(n,k) begins:
            1;
            0,          1;
            9,          0,        1;
          252,         27,        0,      1;
        14337,       1008,       54,      0,    1;
      1327104,      71685,     2520,     90,    0,   1;
    182407545,    7962624,   215055,   5040,  135,   0, 1;
  34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1;
  ...
		

Crossrefs

Row sums give A025035.
Column k=0 gives A370357.
T(n+1,n-1) gives A027468.
T(n+2,n-1) gives 252*A000292.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
          9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3)))
        end:
    T:= (n, k)-> b(n-k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * A370357(n-k).
Sum_{k=1..n} T(n,k) = A370358(n).
T(n,k) mod 9 = A023531(n,k).

A110103 a(n) is the number of 2-regular 4-hypergraphs on 2n labeled vertices. (In a r-hypergraph, each hyper-edge is a proper r-set; k-regular implies that each vertex is in exactly k hyperedges.)

Original entry on oeis.org

1, 0, 0, 15, 1855, 469980, 214402650, 160081596675, 182667234224475, 302414315250247200, 697372026302486234700, 2167773244010692751057625, 8842276105055583472501844625, 46275602006744820263447546152500
Offset: 0

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive.

Examples

			One of the 15 2-regular 4-hypergraphs on 6 vertices: {{1234},{4561}, {2356}}.
		

Crossrefs

Formula

Differential equation satisfied by exponential generating function sum a(n) t^(2n)/(2n)! {F(0) = 1, -144*t^3*(-2 + t^2)^2*(d^2/dt^2)F(t) - 12*(-2 + t^2)*(2*t^8-t^6 + 72 + 6*t^4-108*t^2)*(d/dt)F(t) - t^5*(-2 + t^2)*(t^2-3)*(t^4 + 4*t^2 + 36)*F(t)}.
Linear recurrence for a(n): {(15067980*n + 10550232*n^6 + 2859384*n^7 + 522720*n^8 + 128*n^11 + 2494800 + 61600*n^9 + 4224*n^10 + 52629038*n^3 + 45995730*n^4 + 26679070*n^5 + 37729494*n^2)*a(n) + (3791790*n + 109368*n^6 + 13872*n^7 + 1008*n^8 + 1247400 + 32*n^9 + 3747208*n^3 + 1767087*n^4 + 543858*n^5 + 4994577*n^2)*a(n + 1) + (28354500*n + 154560*n^6 + 11712*n^7 + 384*n^8 + 15478428*n^3 + 5309976*n^4 + 1152480*n^5 + 27874680*n^2 + 12474000)*a(n + 2) + (-623700-794025*n-48*n^6-115380*n^3-17760*n^4-1440*n^5-416757*n^2)*a(n + 3) + (599130*n + 534600 + 267282*n^2 + 59328*n^3 + 6552*n^4 + 288*n^5)*a(n + 4) + (-14166*n-26730-2484*n^2-144*n^3)*a(n + 5) + 54*a(n + 6), a(3) = 15, a(4) = 1855, a(5) = 469980, a(0) = 1, a(1) = 0, a(2) = 0}
Recurrence (of order 5): 54*(3*n - 4)*a(n) = 18*(n-1)*(2*n - 1)*(12*n^2 - 16*n + 9)*a(n-1) + 18*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n + 1)*a(n-2) + 3*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(24*n^2 - 65*n + 24)*a(n-3) + 3*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n + 1)*a(n-4) + 2*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a(n-5). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ 2^(3*n+1) * n^(3*n) / (3^n * exp(3*n+3/2)). - Vaclav Kotesovec, Mar 11 2014

Extensions

Replaced broken link, Vaclav Kotesovec, Mar 11 2014

A135458 Number of transitive reflexive binary relations R on n labeled elements where max_{x}(|{y : xRy}|)=3.

Original entry on oeis.org

0, 0, 0, 16, 148, 1805, 23700, 351239, 5919312, 112984855, 2429692570, 58481205365, 1564981962720, 46269631044377, 1502736397861062, 53336395962363115, 2059205384354896000, 86117408372404734527, 3886421055028996900050, 188615545123265662965785
Offset: 0

Author

Alois P. Heinz, Dec 15 2007

Keywords

Examples

			a(3)=16 because there are 16 relations of the given kind for 3 elements:
1R2, 2R1, 1R3, 3R1, 2R3, 3R2;
1R2, 1R3, 2R3, 3R2;
2R1, 2R3, 1R3, 3R1;
3R1, 3R2, 1R2, 2R1;
1R2, 2R1, 1R3, 2R3;
1R3, 3R1, 1R2, 3R2;
2R3, 3R2, 2R1, 3R1;
1R2, 2R3, 1R3;
1R3, 3R2, 1R2;
2R1, 1R3, 2R3;
2R3, 3R1, 2R1;
3R1, 1R2, 3R2;
3R2, 2R1, 3R1;
1R2, 1R3;
2R1, 2R3;
3R1, 3R2;
(the reflexive relationships 1R1, 2R2, 3R3 have been omitted for brevity)
		

References

  • A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.

Programs

  • Maple
    A025035:= proc(n) option remember; (3*n)! /n! /(6^n); end:
    z:= proc(n) option remember; add(binomial(n, k+k) *doublefactorial(k+k-1) *k^(n-k-k), k=0..floor(n/2)); end:
    r:= proc(n) option remember; n! * add(add(add(add(Stirling2(e, d) *a^(d+i) *(a*(a+1)/2)^(n-i-i-e-d-a) /a! /(n-i-i-e-d-a)! /i! /e! /(2^i), a=0..(n-i-i-e-d)), d=0..min(e, n-i-i-e)), e=0..(n-i-i)), i=0..floor(n/2)) end:
    A135429:= proc(n) option remember; n! *add(add(A025035(i) *z(j) *r(n-3*i-j) /(3*i)! /j! /(n-3*i-j)!, j=0..(n-3*i)), i=0..floor(n/3)) end:
    A000248:= proc(n) add(binomial(n, i)*(n-i)^i, i=0..n) end:
    A135312:= proc(n) option remember; add(binomial(n, i+i)*doublefactorial(i+i-1)*A000248(n-i-i), i=0..floor(n/2)) end:
    a:= proc(n) A135429(n)-A135312(n) end:
    seq(a(i), i=0..30);
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A025035[n_] := A025035[n] = (3n)!/n!/6^n; z[n_] := z[n] = Sum[Binomial[n, k+k]*(k+k-1)!!*k^(n-k-k), {k, 0, Floor[n/2]}]; r[n_] := r[n] = n!*Sum[Sum[Sum[Sum[StirlingS2[e, d]*a^(d+i)*(a*(a+1)/2)^(n-i-i-e-d-a)/a!/(n-i-i-e-d-a)!/i!/e!/2^i, {a, 0, n-i-i-e-d}], {d, 0, Min[e, n-i-i-e]}], {e, 0, n-i-i}], {i, 0, Floor[n/2]}]; A135429[n_] := A135429[n] = n!*Sum[Sum[A025035[i]*z[j]*r[n-3*i-j]/(3 i)!/j!/(n-3*i-j)!, {j, 0, n-3*i}], {i, 0, Floor[n/3]}]; A135312[n_] := SeriesCoefficient[Exp[x*Exp[x]+x^2/2], {x, 0, n}]*n!; a[n_] := A135429[n]-A135312[n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz*)

Formula

a(n) = A135429(n) - A135312(n).

A185148 Number of rectangular arrangements of [1,3n] in 3 increasing sequences of size n and n monotonic sequences of size 3.

Original entry on oeis.org

1, 6, 53, 587, 7572, 109027, 1705249, 28440320, 499208817, 9134237407, 172976239886, 3371587949969, 67351686970929, 1374179898145980, 28557595591148315, 603118526483125869, 12920388129877471030, 280324904918707937001, 6151595155000424589327, 136384555249451824930126
Offset: 1

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

a(n) counts a subset of A025035(n).
a(n) counts a more general set than A005789(n).
a(n) is also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with steps in {(1,0,0), (0,1,0), (0,0,1)} such that for each point (x,y,z) we have x<=y<=z or x>=y>=z. - Alois P. Heinz, Feb 29 2012

Examples

			For n = 2 the a(2) = 6 arrangements are:
+---+  +---+  +---+  +---+  +---+  +---+
|1 4|  |1 6|  |1 3|  |1 3|  |1 2|  |1 2|
|2 5|  |2 5|  |2 5|  |2 4|  |3 5|  |3 4|
|3 6|  |3 4|  |4 6|  |5 6|  |4 6|  |5 6|
+---+  +---+  +---+  +---+  +---+  +---+
Only the second of these arrangements is not counted by A005789(2).
		

Crossrefs

Column k=3 of A208615. - Alois P. Heinz, Feb 29 2012

Programs

  • Maple
    b:= proc(x, y, z) option remember;
          `if`(x=z, `if`(x=0, 1, 2*b(x-1, y, z)), `if`(x>0, b(x-1, y, z), 0)+
          `if`(y>x, b(x, y-1, z), 0)+ `if`(z>y, b(x, y, z-1), 0))
        end:
    a:= n-> b(n-1, n$2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 29 2012
  • Mathematica
    b[x_, y_, z_] := b[x, y, z] = If[x == z, If[x == 0, 1, 2*b[x - 1, y, z]], If[x > 0, b[x - 1, y, z], 0] + If[y > x, b[x, y - 1, z], 0] + If[z > y, b[x, y, z - 1], 0]];
    a[n_] := b[n - 1, n, n];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 12 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * 27^n / n^4, where c = 0.608287207375... . - Vaclav Kotesovec, Sep 03 2014, updated Sep 07 2016

Extensions

More terms and example from Alois P. Heinz, Feb 22 2011
Extended beyond a(8) by Alois P. Heinz, Feb 22 2012

A268163 Number of labeled binary-ternary rooted non-planar trees, indexed by number of leaves.

Original entry on oeis.org

0, 1, 1, 4, 25, 220, 2485, 34300, 559405, 10525900, 224449225, 5348843500, 140880765025, 4063875715900, 127418482316125, 4314607214417500, 156920190449147125, 6100643259005795500, 252476539015516440625, 11081983532721088487500, 514215436341672155715625
Offset: 0

Author

Murray R. Bremner, Jan 27 2016

Keywords

Comments

This can also be interpreted as the number of multilinear monomials of degree n in a nonassociative algebra with an (anti)commutative binary operation and a completely (skew-)symmetric ternary operation; the number of variables in the monomial corresponds to the number of leaves in the tree.
This sequence also enumerates a certain class of Feynman diagrams; see the references, links, and crossrefs below.

Examples

			For n = 4 and using the monomial interpretation, the 25 multilinear monomials of degree 4 are as follows, where [-,-] is the binary operation and (-,-,-) is the ternary operation:
[[[a,b],c],d], [[[a,b],d],c], [[[a,c],b],d], [[[a,c],d],b], [[[a,d],b],c], [[[a,d],c],b], [[[b,c],a],d], [[[b,c],d],a], [[[b,d],a],c], [[[b,d],c],a], [[[c,d],a],b], [[[c,d],b],a], [[a,b],[c,d]], [[a,c],[b,d]], [[a,d],[b,c]], [(a,b,c),d], [(a,b,d),c], [(a,c,d),b], [(b,c,d),a], ([a,b],c,d), ([a,c],b,d), ([a,d],b,c), ([b,c],a,d), ([b,d],a,c), ([c,d],a,b).
		

References

  • J. Bedford, On Perturbative Field Theory and Twistor String Theory, Ph.D. Thesis, 2007, Queen Mary, University of London.
  • B. Feng and M. Luo, An introduction to on-shell recursion relations, Review Article, Frontiers of Physics, October 2012, Volume 7, Issue 5, pp. 533-575.
  • K. Kampf, A new look at the nonlinear sigma model, 17th International Conference in Quantum Chromodynamics (QCD 14), Nuclear and Particle Physics Proceedings, Volumes 258-259, January-February 2015, pp. 86-89.
  • M. L. Mangano and S. J. Parke, Multi-parton amplitudes in gauge theories, Physics Reports, Volume 200, Issue 6, February 1991, pp. 301-367.

Crossrefs

Cf. A001147. The number of labeled binary rooted non-planar trees.
Cf. A025035. The number of labeled ternary rooted non-planar trees.
Cf. A268172. The corresponding number of unlabelled trees.
Cf. A005411. Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Cf. A005412. Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
Cf. A005413. Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Cf. A005414. Feynman diagrams of order 2n with vertex skeletons.
Other sequences related to Feynman diagrams: A115974, A122023, A167872, A214298, A214299.
Cf. A000311.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or nAlois P. Heinz, Jan 28 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0, 1$2][n+1],
           ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    a[0]=0; a[1]=1; a[2]=1; a[n_]:=a[n]=(12(2n-3)a[n-1]+(3n-5)(3n-7)a[n-2])/11; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11 for n>2. - Alois P. Heinz, Jan 28 2016
Because of Koszul duality for operads, the exponential generating function is the compositional inverse of the power series x-x^2/2-x^3/6 (email of Vladimir Dotsenko to Murray R. Bremner, Jan 28 2016).
a(n) ~ sqrt(9-4*sqrt(3)) * ((12+9*sqrt(3))/11)^n * n^(n-1) / (3 * exp(n)). - Vaclav Kotesovec, Feb 24 2016

A318147 Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -9, 10, 0, 477, -756, 280, 0, -74601, 142362, -83160, 15400, 0, 25740261, -55429920, 40900860, -12612600, 1401400, 0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400, 190590400
Offset: 0

Author

Peter Luschny, Aug 22 2018

Keywords

Comments

The name 'Omega polynomial' is not a standard name.

Examples

			[0] [1]
[1] [0,            1]
[2] [0,           -9,          10]
[3] [0,          477,        -756,          280]
[4] [0,       -74601,      142362,       -83160,       15400]
[5] [0,     25740261,   -55429920,     40900860,   -12612600,     1401400]
[6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
		

Crossrefs

All row sums are 1, alternating row sums (taken absolute) are A002115.
T(n,1) ~ A293951(n), T(n,n) = A025035(n).
A023531 (m=1), A318146 (m=2), this seq (m=3), A318148 (m=4).

Programs

  • Maple
    # See A318146 for the missing functions.
    FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
  • Mathematica
    (* OmegaPolynomials are defined in A318146 *)
    Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
  • Sage
    # See A318146 for the function OmegaPolynomial.
    [list(OmegaPolynomial(3, n)) for n in (0..6)]

Formula

Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 3 (for other cases see the cross-references).

A327412 a(n) = multinomial(3*n+2; 2, 3, 3, ..., 3) (n times '3').

Original entry on oeis.org

1, 10, 560, 92400, 33633600, 22870848000, 26072766720000, 46174869861120000, 120054661638912000000, 438679733628584448000000, 2175851478797778862080000000, 14240947928731462652313600000000, 120136636726778618934917529600000000, 1280656547507460077846220865536000000000
Offset: 0

Author

Peter Luschny, Sep 07 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> combinat[multinomial](3*n+2, 3$n, 2):
    seq(a(n), n=0..17);  # Alois P. Heinz, Sep 07 2019
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    a[n_] := multinomial[3n+2, Join[{2}, Table[3, {n}]]];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 19 2025 *)
  • SageMath
    def a(n): return multinomial([2] + [3] * n)
    [a(n) for n in range(15)]

Formula

a(n) = 2^(-n-1)*3^(-n)*Gamma(3*n + 3).
a(n) = (9*(n-1)^3 + 36*(n-1)^2 + 47*n - 27)*a(n-1)/2 for n > 0.
a(n) / n! = A025035(n+1).
a(n)*(n+1) = A014606(n+1).

A361948 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0

Author

Peter Luschny, Apr 13 2023

Keywords

Comments

Row n gives the leading coefficients of the set partition polynomials of type n. The sequence of these polynomial sequences starts: A097805, A048993, A156289, A291451, A291452, ...

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,       1,           1,                 1, ...
  [1] 1, 1,   1,       1,           1,                 1, ...
  [2] 1, 1,   3,      15,         105,               945, ...  A001147
  [3] 1, 1,  10,     280,       15400,           1401400, ...  A025035
  [4] 1, 1,  35,    5775,     2627625,        2546168625, ...  A025036
  [5] 1, 1, 126,  126126,   488864376,     5194672859376, ...  A025037
  [6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ...  A025038
.
Triangle A(n-k, k) starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1,  1;
  [3] 1, 1,  1,   1;
  [4] 1, 1,  3,   1,   1;
  [5] 1, 1, 10,  15,   1, 1;
  [6] 1, 1, 35, 280, 105, 1, 1;
		

Crossrefs

Cf. A060540 (subarray), A370407 (antidiagonal sums, row sums).
Cf. A001147 (row 2), A025035 (row 3), A025036 (row 4), A025037 (row 5), A025038 (row 6), A025039 (row 7), A025040 (row 8), A025041 (row 9).
Cf. A088218 (column 2), A060542 (column 3), A082368 (column 4), A322252 (column 5), A057599 (main diagonal).

Programs

  • Maple
    A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
    seq(seq(A(n-k, k), k = 0..n), n = 0..9);
    # Alternative, using recursion:
    A := proc(n, k) local P; P := proc(n, k) option remember;
    if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
    P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
    seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
    # Alternative, using exponential generating function:
    egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
    row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
    for n from 0 to 6 do [n], row(n) od;  # Peter Luschny, Aug 15 2024
  • Mathematica
    A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
  • SageMath
    def Arow(n, size):
        if n == 0: return [1] * size
        return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
    for n in range(7): print(Arow(n, 7))
    # Alternative, using exponential generating function:
    def SetPolyLeadCoeff(m, n):
        x, z = var("x, z")
        if m == 0: return 1
        w = exp(2 * pi * I / m)
        o = sum(exp(z * w ** k) for k in range(m)) / m
        t = exp(x * (o - 1)).taylor(z, 0, m*n)
        p = factorial(m*n) * t.coefficient(z, m*n)
        return p.leading_coefficient(x)
    for m in range(7):
        print([SetPolyLeadCoeff(m, k) for k in range(6)])

Formula

A(n, k) = (1/k!) * [x^k] P(n, k), where P(n, k) = k!*x^k if n = 0 and otherwise 1 if k = 0 and otherwise Sum_{j=1..k} binomial(n*k, n*j)*P(n, k-j)*x.
A(n, k) = (n*k)!*[x^(n*k)] exp(x^n/n!) for n >= 1. - Peter Luschny, Aug 15 2024
Previous Showing 31-40 of 45 results. Next