cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-84 of 84 results.

A153311 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))); Row sums are 2*3^n.

Original entry on oeis.org

2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 36, 77, 45, 2, 2, 65, 167, 176, 74, 2, 2, 148, 313, 424, 412, 157, 2, 2, 393, 704, 980, 1079, 812, 402, 2, 2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2, 2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2, 2, 9876, 15011, 8647
Offset: 0

Views

Author

Roger L. Bagula, Dec 23 2008

Keywords

Comments

Row sums:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}.

Examples

			{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 36, 77, 45, 2},
{2, 65, 167, 176, 74, 2},
{2, 148, 313, 424, 412, 157, 2},
{2, 393, 704, 980, 1079, 812, 402, 2},
{2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2},
{2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2},
{2, 9876, 15011, 8647, 10169, 20815, 18719, 9826, 15146, 9885, 2}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, n, m, x];
    p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2;
    p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2)));
    Table[ExpandAll[p[x, n]], {n, 0, 10}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))).

A183189 Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 6, 1, 0, 18, 5, 0, 0, 54, 21, 1, 0, 0, 162, 81, 8, 0, 0, 0, 486, 297, 45, 1, 0, 0, 0, 1458, 1053, 216, 11, 0, 0, 0, 0, 4374, 3645, 945, 78, 1, 0, 0, 0, 0, 13122, 12393, 3888, 450, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x), x^2/(1-3x)).
A skewed version of triangular array in A193723.
A202209*A007318 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1
  2, 0
  6, 1, 0
  18, 5, 0, 0
  54, 21, 1, 0, 0
  162, 81, 8, 0, 0, 0
  486, 297, 45, 1, 0, 0, 0
		

Crossrefs

Cf. A000244, A025192, A081038, A183188 (antidiagonal sums).

Formula

G.f.: (1-x)/(1-3*x-y*x^2).
T(n,k) = Sum_{j, j>=0} T(n-2-j,k-1)*3^j.
T(n,k) = 3*T(n-1,k) + T(n-2,k-1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively.

A290582 Numbers m > 2 such that every divisor > 2 is the sum of two or more consecutive divisors.

Original entry on oeis.org

6, 18, 54, 66, 162, 486, 726, 1458, 4374, 7986, 13122, 39366, 87846, 118098, 354294, 530226, 966306, 1062882, 3188646, 9565938, 10629366, 28697814, 43035786, 86093442, 116923026, 258280326, 578476566, 774840978, 1286153286, 2324522934, 6973568802, 14147686146
Offset: 1

Views

Author

Michel Lagneau, Aug 07 2017

Keywords

Comments

a(n) is even because the divisors are {d(1), d(2), d(3), ...} with d(1) = 1, and if d(2) is odd then d(3) = d(2) + 1 is even, a contradiction. Therefore d(2) = 2 and d(3) = 3.
a(n) == 0 (mod 6).
The sequence is infinite because the numbers of the form 2*3^i (A025192) and the numbers of the form 6*11^i for i >= 1 are in the sequence.
The divisors of 2*3^i are {d(1), d(2), d(3), ...} = {1, 2, 3, 6, 9, 18, 27, 54, ...} where d(1 + 2i) = 3^i for i >= 0 and d(2i) = 2*3^(i-1) for i >= 1.
The divisors of the form 6*11^k are {d(1), d(2), d(3), ...} = {1, 2, 3, 6, 11, 22, 33, 66, 121, ...} where d(i + 4j) = i*11^j for i >= 1 and j >= 0 and where d(4j) = 6*11^(j-1) for j >= 1.
No term can be divisible by 4, 5, 7, 9, 13, 17, or 19. Up to 5*10^11, the only terms which are divisible by a prime > 11 are 530226 = 2*3^5*1091, 43035786 = 2*3^7*9839, 578476566 = 2*3^5*1091^2, and 2*3^7*9839^2. Larger such terms are 2*3*11^12*6904542428779 and 2*3^29*308836698141971. - Giovanni Resta, Aug 07 2017

Examples

			66 is in the sequence because the divisors are {1, 2, 3, 6, 11, 22, 33, 66} and:
3 = 2 + 1;
6 = 3 + 2 + 1;
11 = 6 + 3 + 2;
22 = 11 + 6 + 3 + 2;
33 = 22 + 11;
66 = 33 + 22 + 11.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^5:
    for n from 4 to nn do:
      d:=divisors(n):n1:=nops(d):it:=0:
       for k from 3 to n1 do:
         for j from 1 to k-1 do:
           s:=sum('d[k-i]', 'i'=1..j):
            if s=d[k]
             then
             it:=it+1:
             else
            fi:
         od:
        od:
         if n1>2 and it = n1-2
          then
          printf(`%d, `,n):
          else
         fi:
        od:
  • Mathematica
    Select[Range[3, 10^5], Function[d, Function[t, AllTrue[ TakeWhile[ Reverse@ d, # > 2 &], MemberQ[t, #] &]]@ Union@ Flatten@ Array[Total /@ Partition[d, #, 1] &, Length@ d - 1, 2]]@ Divisors@ # &] (* Michael De Vlieger, Aug 07 2017 *)
  • PARI
    isokds(k, v) = {vsmall = select(x->(x < k), v); for (i=1, #vsmall, s = v[i]; if (s > k, break); for (j=i+1, #vsmall, s += vsmall[j]; if (s > k, break, if (k == s, return(1))););); return (0);}
    isok(n) = {if (n>2, my(d = divisors(n)); for (i=1, #d, if (d[i] > 2, if (! isokds(d[i], d), return (0)); ); ); return(1);)} \\ Michel Marcus, Aug 07 2017

Extensions

Name corrected by Jon E. Schoenfield, Sep 11 2017

A329971 Expansion of 1 / (1 - 2 * Sum_{k>=1} x^(k^2)).

Original entry on oeis.org

1, 2, 4, 8, 18, 40, 88, 192, 420, 922, 2024, 4440, 9736, 21352, 46832, 102720, 225298, 494144, 1083804, 2377112, 5213736, 11435312, 25081112, 55010496, 120654744, 264632554, 580419672, 1273036832, 2792156864, 6124049048, 13431901808, 29460245120, 64615275940
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - 2 Sum[x^(k^2), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(2 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

Formula

G.f.: 1 / (2 - theta_3(x)), where theta_3() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A000122(k) * a(n-k).
Previous Showing 81-84 of 84 results.