cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A103978 Expansion of (sqrt(1-12*x^2)+12*x^2+2*x-1)/(2*x*sqrt(1-12*x^2)).

Original entry on oeis.org

1, 3, 6, 9, 54, 54, 540, 405, 5670, 3402, 61236, 30618, 673596, 288684, 7505784, 2814669, 84440070, 28146690, 956987460, 287096238, 10909657044, 2975361012, 124965162504, 31241290626, 1437099368796, 331638315876, 16581915793800
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Crossrefs

Programs

  • Maple
    rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
    f:= gfun:-rectoproc({rec=0,a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Sep 13 2020
  • Mathematica
    CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]),{x,0,30}],x] (* Harvey P. Dale, Aug 06 2022 *)

Formula

G.f.: 1/sqrt(1-12*x^2)+(1-sqrt(1-12*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 3^(n-k) * A000108(k) * C(k+1, n-k)}.
D-finite with recurrence: -(n+1)*a(n)+2*(n-1)*a(n-1) +12*(2n-3)*a(n-2) +24(2-n)*a(n-3) + 144*(4-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 2^(n + 1/2) * 3^(n/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^(n + 1/2) * 3^((n+1)/2) / (sqrt(Pi) * n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021

A141319 INVERTi transform of A141318.

Original entry on oeis.org

2, 3, 8, 46, 252, 1558, 9800, 64115, 428546, 2921527, 20220128, 141746372, 1004278856, 7180301580, 51739691584, 375370204876, 2739615168344, 20100885190508, 148179065429664, 1096966770610372, 8151826588836472, 60787793832205004, 454719634089674432
Offset: 1

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Keywords

Comments

Number of generators of degree n of the primitive Lie algebra of the Hopf algebra of 2-colored planar binary trees.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, add(add((2^d)*binomial(2*d-2,d-1),
                       d=divisors(j)) *b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember;
          `if`(n<1, -1, -add(a(n-i) *b(i), i=1..n))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 27 2012
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n<1, -1, -Sum[a[n-i]* b[i], {i, 1, n}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

A336524 Triangular array read by rows. T(n,k) is the number of unlabeled binary trees with n internal nodes and exactly k distinguished external nodes (leaves) for 0 <= k <= n+1 and n >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 6, 2, 5, 20, 30, 20, 5, 14, 70, 140, 140, 70, 14, 42, 252, 630, 840, 630, 252, 42, 132, 924, 2772, 4620, 4620, 2772, 924, 132, 429, 3432, 12012, 24024, 30030, 24024, 12012, 3432, 429
Offset: 0

Views

Author

Geoffrey Critzer, Jul 24 2020

Keywords

Examples

			Taylor series starts: (y + 1) + x*(y + 1)^2 + 2*x^2*(y + 1)^3 + 5*x^3*(y + 1)^4 + 14*x^4*(y + 1)^5 + ...
Triangle T(n, k) begins:
   1,   1;
   1,   2,   1;
   2,   6,   6,   2;
   5,  20,  30,  20,   5;
  14,  70, 140, 140,  70,  14;
  42, 252, 630, 840, 630, 252, 42;
  ...
		

Crossrefs

Cf. A025225 (row sums), A000108 (column k=0), A000984 (column k=1), A002457 (column k=2).
Cf. A007318.

Programs

  • Mathematica
    nn = 5; b[z_] := (1 - Sqrt[1 - 4 z])/(2 z);Map[Select[#, # > 0 &] &,Transpose[Table[CoefficientList[Series[D[v b[v z], {v, k}]/k! /. v -> 1, {z, 0, nn}], z], {k, 0, nn + 1}]]] // Grid
  • Maxima
    T(n,m):=(binomial(n+m,n)*binomial(2*n+1,n+m))/(2*n+1); /* Vladimir Kruchinin, Oct 16 2020 */
    
  • PARI
    for(n=1,8,for(k=0,n,print1(binomial(n,k)*binomial(2*n-2,n-1)/n,", "));print()) \\ Hugo Pfoertner, Oct 16 2020

Formula

O.g.f. for column k: 1/k!*(d/dy)^k y*B(y*x)|y=1 where B(x) is the o.g.f. for A000108.
From Vladimir Kruchinin, Oct 16 2020: (Start)
O.g.f.: (1-sqrt(-4*x*y-4*x+1))/(2*x).
T(n,m) = C(n+m,n)*C(2*n+1,n+m)/(2*n+1).
(End)
Previous Showing 11-13 of 13 results.