0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 2, 0, 0, 2, 0, 2, 0, 1, 2, 0, 0, 1, 3, 1, 0, 2, 1, 0, 0, 1, 2, 1, 0, 2, 1, 0, 0, 2, 1, 2, 0, 0, 3, 0, 0, 3, 2, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 1, 2, 0, 1, 3, 0, 0, 2, 3, 1, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 4, 0, 3, 0, 1, 4
Offset: 1
a(12) = 0 because the only representation of 12 as a sum of three nonzero squares is given by [2,2,2], i.e., 12 = 2^2 + 2^2 + 2^2, but this is not a primitive sum because gcd(2,2,2) = 2, not 1. Such a situation appears for n = 12, 24, 36, 44, 48, 56, 68, 72, 76, 84, 88, 96, ... For these numbers A025427(n) = 1 and a(n) = 0.
a(27) = 1 because the only primitive representation of 27 as a sum of three nonzero squares is denoted by [1,1,5]. The representation [3,3,3] is not primitive.
Comments