cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A375731 a(n) is the number of partitions of n having a square number of parts whose sum of squares is a square.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 2, 7, 4, 4, 7, 7, 6, 9, 12, 9, 21, 21, 19, 26, 30, 32, 43, 54, 54, 64, 87, 85, 119, 128, 146, 174, 205, 213, 281, 324, 368, 420, 503, 531, 688, 760, 837, 992, 1174, 1252, 1535, 1705, 1931, 2236, 2619, 2821, 3402, 3769, 4272
Offset: 0

Views

Author

Felix Huber, Aug 28 2024

Keywords

Examples

			a(13) counts the 4 partitions [1, 1, 1, 1, 1, 1, 1, 3, 3] with 9 = 3^2 parts and 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 = 5^2, [1, 4, 4, 4] with 2^2 parts and 1^2 + 4^2 + 4^2 + 4^2 = 7^2, [2, 2, 4, 5] with 4 = 2^2 parts and 2^2 + 2^2 + 4^2 + 5^2 = 7^2, [13] with 1 = 1^2 part and 13^2 = 13^2.
		

Crossrefs

Programs

  • Maple
    # first Maple program to calculate the sequence:
    A375731:=proc(n) local a,i,j; a:=0; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then a:=a+1 fi od; return a end proc; seq(A375731(n),n=0..63);
    # second Maple program to calculate the partitions:
    A375731part:=proc(n) local L,i,j;L:=[]; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then L:=[op(L),i] fi od; return op(L) end proc; A375731part(13);
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (issquare(#p) && issquare(norml2(Vec(p))), nb++)); nb; \\ Michel Marcus, Aug 30 2024

Formula

1 <= a(n) <= A240127(n).

A293175 Integers with precisely six partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

66, 81, 97, 99, 105, 110, 115, 121, 123, 124, 137, 139, 141, 149, 155, 156, 158, 159, 164, 179, 188, 239, 264, 284, 440, 496, 624, 632, 656, 752, 1056, 1136, 1760, 1984, 2496, 2528, 2624, 3008, 4224, 4544, 7040, 7936, 9984, 10112, 10496, 12032, 16896, 18176
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 6.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ PowersRepresentations[n, 4, 2]; Select[ Range@ 19000, f@# == 6 &] (* Robert G. Wilson v, Oct 27 2017 *)

A294308 Integers with precisely seven partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

82, 98, 100, 102, 106, 108, 118, 125, 129, 132, 133, 134, 135, 161, 163, 173, 183, 197, 199, 204, 211, 212, 215, 236, 263, 328, 392, 400, 408, 424, 432, 472, 528, 536, 816, 848, 944, 1312, 1568, 1600, 1632, 1696, 1728, 1888, 2112, 2144, 3264, 3392, 3776
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 7.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length@PowersRepresentations[n, 4, 2]; Select[Range@650, f@#==7 &] (* Vincenzo Librandi, Oct 28 2017 *)

A294310 Integers with precisely nine partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

90, 146, 166, 174, 185, 187, 205, 206, 207, 209, 219, 220, 221, 223, 231, 235, 251, 260, 271, 287, 316, 359, 360, 380, 584, 664, 696, 824, 880, 1040, 1264, 1440, 1520, 2336, 2656, 2784, 3296, 3520, 4160, 5056, 5760, 6080, 9344, 10624, 11136, 13184, 14080
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 9.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length@PowersRepresentations[n, 4, 2]; Select[Range@850, f@#==9 &] (* Vincenzo Librandi, Oct 28 2017 *)

A385860 a(n) is the number of distinct multisets of sides of quadrilaterals with perimeter n, where all four sides are squares.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 3, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 0, 2, 1, 1, 1
Offset: 0

Views

Author

Felix Huber, Jul 22 2025

Keywords

Comments

a(n) is the number of partitions of n into 4 nonzero squares < n/2.

Examples

			The a(51) = 1 multiset is [1, 9, 16, 25].
The a(52) = 3 multisets are [1, 1, 25, 25], [4, 16, 16, 16] and [9, 9, 9, 25].
		

Crossrefs

Programs

  • Maple
    # After Alois P. Heinz (A025428)
    b:=proc(n,i,t)
        option remember;
        `if`(n=0,`if`(t=0,1,0),`if`(i<1 or t<1, 0, b(n,i-1,t)+`if`(i^2>n,0,b(n-i^2,i,t-1))))
        end:
    A385860:=n->b(n,floor(sqrt((n-1)/2)),4):
    seq(A385860(n),n=0..87);

Formula

a(n) <= A025428(n).

A025769 Expansion of 1/((1-x)*(1-x^3)*(1-x^8)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 102, 105, 108, 111
Offset: 0

Views

Author

Keywords

Comments

Mark Underwood observed that the number of partitions into four nonzero squares of the squares of primes is given by A025428(A001248(n)) = a(prime(n)-4), cf. sequence A216374. - M. F. Hasler, Sep 16 2012
a(n) is the number of partitions of n into parts 1, 3, and 8. - Joerg Arndt, Apr 05 2024
a(n) = a(-12-n) for all n in Z using the floor definition. - Michael Somos, Apr 04 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ... - _Michael Somos_, Apr 04 2024
		

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^8)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1,0,0,0,1,-1,0,-1,1},{1,1,1,2,2,2,3,3,4,5,5,6},60] (* Harvey P. Dale, Nov 29 2012 *)
    a[ n_] := Floor[((n+6)^2/16 + 1)/3]; (* Michael Somos, Apr 04 2024 *)
  • PARI
    A025769(n)=((n+6)^2+16)\48  \\ M. F. Hasler, Sep 16 2012

Formula

a(n) = floor((x^2+12x+c)/48) with 51 <= c <= 58. - M. F. Hasler, Sep 16 2012
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=3, a(7)=3, a(8)=4, a(9)=5, a(10)=5, a(11)=6, a(n)=a(n-1)+a(n-3)-a(n-4)+a(n-8)-a(n-9)- a(n-11)+ a(n-12). - Harvey P. Dale, Nov 29 2012

A218491 Number of ways that prime(n) can be represented as the sum of four nonzero squares.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 1, 1, 2, 3, 2, 3, 3, 2, 1, 4, 1, 5, 2, 3, 2, 5, 2, 3, 4, 2, 5, 6, 6, 5, 3, 3, 5, 5, 6, 4, 7, 5, 9, 5, 7, 4, 6, 6, 5, 5, 7, 4, 9, 8, 4, 9, 6, 10, 8, 10, 7, 9, 9, 7, 9, 8, 9, 13, 10, 10, 11, 7, 13, 7, 10, 8, 11, 10, 13
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(pi(A213721(n))) = n, where pi(n) is the prime counting function.

Examples

			a(11) = 2 because prime(11) = 31 = 2*1 + 4 + 25 = 4 + 3*9.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[PowersRepresentations[Prime[n], 4, 2], _?(Min[#] > 0 &)], {n, 84}]

A223726 Multiplicities for A004433: sum of four distinct nonzero squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 4, 2, 1, 2, 3, 1, 5, 2, 2, 2, 2, 3, 4, 3, 1, 4, 1, 1, 4, 2, 2, 2, 5, 3, 1, 6, 3, 3, 1, 2, 1, 1, 4, 4, 1, 2, 5, 1, 3, 7, 3, 2, 3, 4
Offset: 1

Views

Author

Wolfdieter Lang, Mar 26 2013

Keywords

Comments

The number A004433(n) can be partitioned into four distinct parts, each of which is a nonzero square, and a(n) gives the multiplicity which is the number of different partitions of this type.

Examples

			a(1) = 1 because  A004433(1) = 30 has only one representation as sum of four distinct nonzero squares, given by the quadruple [1,2,3,4]: 1^2 + 2^2 + 3^2 + 4^2 = 30.
a(16) = 3 because for A004433(3) = 78 the three different quadruples are [1, 2, 3, 8], [1, 4, 5, 6] and [2, 3, 4, 7].
a(48) = 5 because A004433(48) = 126 has five different  representations given by the five quadruples [1, 3, 4, 10], [1, 5, 6, 8], [2, 3, 7, 8], [2, 4, 5, 9], [4, 5, 6, 7].
		

Crossrefs

Formula

a(n) = k if there are k different quadruples [s(1),s(2),2(3),s(4)] with increasing positive entries with sum(s(j)^2,j=1..4) = A004433(n), n >= 1.

A294309 Integers with precisely eight partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

114, 117, 122, 126, 145, 147, 148, 157, 165, 169, 172, 175, 177, 181, 190, 193, 203, 227, 233, 311, 456, 488, 504, 592, 688, 760, 1824, 1952, 2016, 2368, 2752, 3040, 7296, 7808, 8064, 9472, 11008, 12160, 29184, 31232, 32256, 37888, 44032, 48640
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 8.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length@PowersRepresentations[n, 4, 2]; Select[Range@850, f@#==8 &] (* Vincenzo Librandi, Oct 28 2017 *)

A294311 Integers with precisely ten partitions into sums of four squares of nonnegative numbers.

Original entry on oeis.org

130, 138, 153, 154, 171, 180, 182, 195, 196, 201, 213, 214, 217, 228, 229, 238, 241, 244, 247, 249, 253, 254, 257, 259, 269, 276, 277, 281, 295, 299, 303, 308, 317, 319, 332, 335, 347, 428, 431, 520, 552, 616, 720, 728, 784, 856, 912, 952, 976, 1016, 1104
Offset: 1

Views

Author

Robert Price, Oct 27 2017

Keywords

Comments

A002635(a(n)) = 10.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length@PowersRepresentations[n, 4, 2]; Select[Range@850, f@#==10 &] (* Vincenzo Librandi, Oct 28 2017 *)
Previous Showing 31-40 of 40 results.