cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A087195 Numbers of the form 1+(1+p)*p^e, p prime and e>0.

Original entry on oeis.org

7, 13, 25, 31, 37, 49, 57, 97, 109, 133, 151, 183, 193, 307, 325, 381, 385, 393, 553, 751, 769, 871, 973, 993, 1407, 1453, 1537, 1723, 1893, 2257, 2367, 2745, 2863, 2917, 3073, 3541, 3751, 3783, 4557, 5113, 5203, 5403, 6145, 6321, 6973, 7221
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Comments

a(n) = 1+(1+A025473(k))*A000961(k) for some k>1, this k is unique except for n=2: a(2) = 13 = 1+(1+2)*2^2 = 1+(1+3)*3^1.

Examples

			p=2, e=7: 1+(1+A000040(1))*A000040(1)^7 = 1+(1+2)*2^7 = 1+3*128 = 385 = a(17);
p=7, e=2: 1+(1+A000040(4))*A000040(4)^2 = 1+(1+7)*7^2 = 1+8*49 = 393 = a(18).
		

Crossrefs

A088233 First differences of roots of consecutive prime powers; a(1)=1.

Original entry on oeis.org

1, 1, -1, 3, 2, -5, 1, 8, 2, -11, 15, 2, 4, -18, -2, 26, 2, -29, 35, 4, 2, 4, -40, 46, 6, 2, -59, 65, 4, 2, 6, -76, 80, 6, 8, 4, 2, 4, 2, 4, -102, -6, 122, -125, 129, 6, 2, 10, 2, 6, 6, 4, -154, 160, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, -238, 248, -249, 255, 6, 6, 2, 6, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2003

Keywords

Comments

a(n) = A025473(n+1) - A025473(n).

Crossrefs

A135524 Row sums of A137152.

Original entry on oeis.org

1, 3, 6, 9, 14, 21, 26, 33, 44, 57, 66, 83, 102, 125, 146, 165, 194, 225, 242, 279, 320, 363, 410, 453, 506, 565, 626, 659, 726, 797, 870, 949, 1004, 1087, 1176, 1273, 1374, 1477, 1584, 1693, 1806, 1917, 2018, 2145, 2210, 2341, 2478, 2617, 2766, 2917, 3074
Offset: 1

Views

Author

Mats Granvik, Feb 19 2008

Keywords

Crossrefs

Cf. A137152.

Programs

  • Maple
    A000961 := proc(n) option remember ; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if nops( ifactors(a)[2] ) = 1 then RETURN(a); fi; od: fi; end: A025473 := proc(n) option remember ; if n <= 2 then n; else ifactors( A000961(n))[2] ; op(1,op(1,%)) ; fi; end: A137152 := proc(n) option remember ; local a,m,i; if n = 1 then RETURN([1]) ; else a := procname(n-1) ; m := A025473(n) ; for i from 1 to nops(a) do if gcd(op(i,a),m) <> 1 then m := m*op(i,a) ; a := subsop(i=1,a) ; fi; od; a := [op(a),m] ; fi; RETURN(a) ; end: A135524 := proc(n) add(k,k=A137152(n)) ; end: for n from 1 to 80 do printf("%d,",A135524(n)) ; od: # R. J. Mathar, Dec 17 2008

Extensions

More terms from R. J. Mathar, Dec 17 2008

A135525 Row sums of terms > 1 in A137152.

Original entry on oeis.org

0, 2, 5, 7, 12, 19, 23, 29, 40, 53, 61, 78, 97, 120, 140, 158, 187, 218, 234, 271, 312, 355, 402, 444, 497, 556, 617, 649, 716, 787, 860, 939, 993, 1076, 1165, 1262, 1363, 1466, 1573, 1682, 1795, 1905, 2005, 2132, 2196, 2327, 2464, 2603, 2752, 2903, 3060, 3223
Offset: 1

Views

Author

Mats Granvik, Feb 19 2008

Keywords

Crossrefs

Cf. A137152.

Programs

  • Maple
    A000961 := proc(n) option remember ; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if nops( ifactors(a)[2] ) = 1 then RETURN(a); fi; od: fi; end: A025473 := proc(n) option remember ; if n <= 2 then n; else ifactors( A000961(n))[2] ; op(1,op(1,%)) ; fi; end: A137152 := proc(n) option remember ; local a,m,i; if n = 1 then RETURN([1]) ; else a := procname(n-1) ; m := A025473(n) ; for i from 1 to nops(a) do if gcd(op(i,a),m) <> 1 then m := m*op(i,a) ; a := subsop(i=1,a) ; fi; od; a := [op(a),m] ; fi; RETURN(a) ; end: A135525 := proc(n) local a,k,i ; a := 0 ; k :=A137152(n) ; for i in k do if i <> 1 then a := a+i; fi; od; a ; end: for n from 1 to 80 do printf("%d,",A135525(n)) ; od: # R. J. Mathar, Dec 17 2008

Extensions

More terms from R. J. Mathar, Dec 17 2008

A181121 As n increases, the reciprocal of a(n) = asymptotic fraction of positive integers whose longest string of consecutive divisors is A181062(n).

Original entry on oeis.org

2, 3, 12, 15, 70, 840, 1260, 2772, 30030, 720720, 765765, 12932920, 243374040, 6692786100, 40156716600, 83181770100, 2406725881560, 144403552893600, 148414762696200, 5476504743489780, 224275908542914800
Offset: 1

Views

Author

Matthew Vandermast, Oct 07 2010

Keywords

Comments

The asymptotic average, as n increases, of n's longest string of consecutive divisors is the constant 1.787780456..., given in A064859.

Examples

			A number's longest string of consecutive divisors is a(5)=6 iff the integer is a multiple of 60 but not of 7. As n increases, the asymptotic fraction of positive integers satisfying those conditions equals 1/60 * 6/7 = 1/70. Therefore a(5) = 70.
		

Formula

a(n) = A051451(n) * A025473(n+1)/(A025473(n+1)-1).
If A181062(n) = 2^(e-1), then a(n) = A003418(2^e) = A051451(n+1).

A228485 Odd prime powers p^k such that p is congruent to 2 or 5 mod 9.

Original entry on oeis.org

5, 11, 23, 25, 29, 41, 47, 59, 83, 101, 113, 121, 125, 131, 137, 149, 167, 173, 191, 227, 239, 257, 263, 281, 293, 311, 317, 347, 353, 383, 389, 401, 419, 443, 461, 479, 491, 509, 529, 563, 569, 587, 599, 617, 625, 641, 653, 659, 677, 743, 761, 797, 821, 839
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 23 2013

Keywords

Comments

For any n, the equation x^3 + y^3 = a(n)*z^3 is not solvable in nonzero integers. Therefore, these numbers do not occur in A020898.

References

  • Henri Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics 239, Springer, 2007, pp. 374-375.

Crossrefs

Cf. A020898, A025473. Subsequence of A061345.

Programs

  • PARI
    forstep(n=3, 839, 2, p=isprimepower(n); if(p>0, m=Mod(round(n^(1/p)), 9); if(m==2||m==5, print1(n, ", "))));

A330669 The prime indices of the prime powers (A000961).

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 7, 8, 9, 3, 2, 10, 11, 1, 12, 13, 14, 15, 4, 16, 17, 18, 1, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 30, 5, 3, 31, 1, 32, 33, 34, 35, 36, 37, 38, 39, 6, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
Offset: 1

Views

Author

Grant E. Martin and Robert G. Wilson v, Dec 23 2019

Keywords

Examples

			a(16) is 2 since A000961(16) is 27 which is 3^3 = (p_2)^3, i.e., the prime index of 3 is 2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k; for k from
          1+b(n-1) while nops(ifactors(k)[2])>1 do od; k
        end: b(1):=1:
    a:= n-> `if`(n=1, 0, numtheory[pi](ifactors(b(n))[2, 1$2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    mxn = 500; Join[{0}, Transpose[ Sort@ Flatten[ Table[ {Prime@n^ex, n}, {n, PrimePi@ mxn}, {ex, Log[Prime@n, mxn]}], 1]][[2]]]
  • PARI
    lista(nn) = {print1(0); for(n=2, nn, if(isprimepower(n, &p), print1(", ", primepi(p)))); } \\ Jinyuan Wang, Feb 19 2020
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A330669(n):
        if n == 1: return 0
        def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return int(primepi(primefactors(kmax)[0])) # Chai Wah Wu, Aug 20 2024

Formula

a(n) = A000720(A025473(n)). - Michel Marcus, Dec 24 2019
A000040(a(n))^A025474(n) = A000961(n) for n > 0. - Alois P. Heinz, Feb 20 2020

A082950 Power base and exponent of n-th prime power exchanged.

Original entry on oeis.org

0, 1, 1, 4, 1, 1, 9, 8, 1, 1, 16, 1, 1, 1, 32, 27, 1, 1, 25, 1, 1, 1, 1, 128, 1, 1, 1, 36, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 2048, 243, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 8192, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 125, 1, 64, 1, 1, 1, 1, 1, 1, 1, 131072, 1, 1, 1, 1, 1, 1, 1, 2187, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]]^f[[1, 1]], Nothing]]; s[1] = 0; Array[s, 250] (* Amiram Eldar, May 16 2025 *)

Formula

a(n) = A025474(n)^A025473(n) while A025473(n)^A025474(n) = A000961(n).
a(n) = 1 iff A000961(n) is prime.

Extensions

a(71) and following corrected by Georg Fischer, Dec 09 2022
Previous Showing 21-28 of 28 results.