cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A254282 Expansion of (1 - (1 - 27*x)^(1/3)) / (9*x).

Original entry on oeis.org

1, 9, 135, 2430, 48114, 1010394, 22084326, 496897335, 11428638705, 267430145697, 6345388002447, 152289312058728, 3690087176807640, 90143558176300920, 2217531531137002632, 54883905395640815142, 1365640704844474400298, 34141017621111860007450
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Crossrefs

Programs

  • Magma
    [Round(3^(3*n)*Gamma(n+2/3)/(Gamma(2/3)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
    
  • Mathematica
    CoefficientList[Series[(1-(1-27*x)^(1/3))/(9*x),{x,0,20}],x]
    CoefficientList[Series[Hypergeometric1F1[2/3,2,27*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    nxt[{n_,a_}]:={n+1,((27n+18)*a)/(n+2)}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Jun 03 2019 *)
  • SageMath
    [3^(3*n)*rising_factorial(2/3,n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022

Formula

G.f.: (1 - (1-27*x)^(1/3)) / (9*x).
a(n) ~ 3^(3*n) / (Gamma(2/3) * n^(4/3)).
Recurrence: (n+1)*a(n) = 9*(3*n-1)*a(n-1).
a(n) = 27^n * Gamma(n+2/3) / (Gamma(2/3) * Gamma(n+2)).
E.g.f.: hypergeom([2/3], [2], 27*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/3, n+1)*3^(3*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 3^n*A025748(n+1). (End)

A225439 Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)).

Original entry on oeis.org

1, 3, 21, 162, 1305, 10773, 90342, 765936, 6546177, 56293380, 486451251, 4220183916, 36731240910, 320571837810, 2804298945840, 24580601689752, 215832643307217, 1898042178972285, 16714070686567620, 147360883148636850, 1300623629653125855
Offset: 0

Views

Author

Vladimir Kruchinin, May 08 2013

Keywords

Crossrefs

Programs

  • Maple
    A225439 := n -> `if`(n=0,1,(GAMMA(n+2/3)/GAMMA(2/3)+GAMMA(n+1/3)/(GAMMA(1/3)))* 3^(2*n-1)/GAMMA(n+1)): seq(A225439(i),i=0..20); # Peter Luschny, Jul 05 2013
  • Mathematica
    Table[Sum[Binomial[k,n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1,n-1], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 22 2013 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1),k,0,n);
    
  • PARI
    my(x='x+O('x^66)); Vec(3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3))) \\ Joerg Arndt, May 08 2013
    
  • PARI
    {a(n)=local(B=(1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x));polcoeff(1+x*B'/B, n, x)} \\ Paul D. Hanna, May 08 2013

Formula

a(n) = Sum_{k = 0..n} C(k,n-k)*3^(k)*(-1)^(n-k)*C(n+k-1,n-1), n>0, a(0)=1.
G.f.: A(x) = 1 + x*B'(x)/B(x), where B(x) = (1-(1-9*x)^(1/3))/(3*x) is the g.f. of A097188.
n*(n-1)*a(n) = 18*(n-1)^2*a(n-1) - 9*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, May 22 2013
a(n) ~ 3^(2*n-1)/(GAMMA(2/3)*n^(1/3)). - Vaclav Kotesovec, May 22 2013
a(n) = ((Gamma(n+2/3)/Gamma(2/3))+(Gamma(n+1/3)/Gamma(1/3)))*3^(2*n-1)/Gamma(n+1) for n > 0. - Peter Luschny, Jul 05 2013
From Peter Bala, Mar 11 2022: (Start)
a(n) = [x^n] (1/(1 - 3*x + 3*x^2))^n. Cf. A122868(n) = [x^n] (1 + 3*x + 3*x^2)^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

A283151 Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).

Original entry on oeis.org

1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0

Views

Author

Tom Richardson, Mar 01 2017

Keywords

Comments

This is an example of a Riordan group involution.
Dual Riordan array of A283150.
With A283150 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283150 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(i,j), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.

Examples

			Triangle begins
         1;
         6,        -1;
        45,       -15,       1;
       360,      -180,      24,       -1;
      2970,     -1980,     396,      -33,      1;
     24948,    -20790,    5544,     -693,     42,     -1;
    212058,   -212058,   70686,   -11781,   1071,    -51,    1;
   1817640,  -2120580,  848232,  -176715,  21420,  -1530,   60,  -1;
  15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
		

Crossrefs

Formula

a(m,n) = binomial(-n-2/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(1/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m,n-1)*(n-1-m)/(9*n-3) for 0 < n <= m; matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-1/3) about 0. For example, for n = 4 we have (1 - 9*x)^(11/3) = 2970*x^4 - 1980*x^3 + 396*x^2 - 33*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(360 - 180*(9*x) + 24*(9*x)^2/2! - (9*x)^3/3!) = 360 - 1980*x + 5544*x^2/2! - 11781*x^3/3! + 21420*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(1/3))/(3*x). See A025748. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-1/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-1/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 2/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(2/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(2/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+6) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)

Extensions

Offset corrected by Werner Schulte, Aug 05 2017

A218540 Reduced third-order Patalan numbers.

Original entry on oeis.org

1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
Offset: 0

Views

Author

R. J. Mathar, Nov 01 2012

Keywords

Comments

Obtained by removing powers of 3 in a systematic manner from the Patalan numbers A025748.

Crossrefs

Programs

  • Maple
    A218540 := proc(n)
        option remember;
        if n <=2 then
            1;
        elif n = 3 then
            5 ;
        else
            (n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
            -%/n/(n+2)/(n-1) ;
        end if;
    end proc:
  • Mathematica
    a[n_] := 3^(2*n-2-Floor[n/2]) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = A025748(n)/A108411(n).
D-finite with recurrence n*(n+2)*(n-1)*a(n) + (n-1)*(n-2)*(n+4)*a(n-1) - 3*(3*n-4)*(3*n-7)*(n+2)*a(n-2) - 3*(3*n-10)*(n+4)*(3*n-7)*a(n-3) = 0, n >= 4.
a(n) ~ 3^(2*n-2-floor(n/2)) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025
Previous Showing 11-14 of 14 results.