A254282
Expansion of (1 - (1 - 27*x)^(1/3)) / (9*x).
Original entry on oeis.org
1, 9, 135, 2430, 48114, 1010394, 22084326, 496897335, 11428638705, 267430145697, 6345388002447, 152289312058728, 3690087176807640, 90143558176300920, 2217531531137002632, 54883905395640815142, 1365640704844474400298, 34141017621111860007450
Offset: 0
-
[Round(3^(3*n)*Gamma(n+2/3)/(Gamma(2/3)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
-
CoefficientList[Series[(1-(1-27*x)^(1/3))/(9*x),{x,0,20}],x]
CoefficientList[Series[Hypergeometric1F1[2/3,2,27*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
nxt[{n_,a_}]:={n+1,((27n+18)*a)/(n+2)}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Jun 03 2019 *)
-
[3^(3*n)*rising_factorial(2/3,n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022
A225439
Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)).
Original entry on oeis.org
1, 3, 21, 162, 1305, 10773, 90342, 765936, 6546177, 56293380, 486451251, 4220183916, 36731240910, 320571837810, 2804298945840, 24580601689752, 215832643307217, 1898042178972285, 16714070686567620, 147360883148636850, 1300623629653125855
Offset: 0
-
A225439 := n -> `if`(n=0,1,(GAMMA(n+2/3)/GAMMA(2/3)+GAMMA(n+1/3)/(GAMMA(1/3)))* 3^(2*n-1)/GAMMA(n+1)): seq(A225439(i),i=0..20); # Peter Luschny, Jul 05 2013
-
Table[Sum[Binomial[k,n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1,n-1], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 22 2013 *)
-
a(n):=if n=0 then 1 else sum(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1),k,0,n);
-
my(x='x+O('x^66)); Vec(3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3))) \\ Joerg Arndt, May 08 2013
-
{a(n)=local(B=(1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x));polcoeff(1+x*B'/B, n, x)} \\ Paul D. Hanna, May 08 2013
A283151
Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).
Original entry on oeis.org
1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0
Triangle begins
1;
6, -1;
45, -15, 1;
360, -180, 24, -1;
2970, -1980, 396, -33, 1;
24948, -20790, 5544, -693, 42, -1;
212058, -212058, 70686, -11781, 1071, -51, 1;
1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1;
15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
A218540
Reduced third-order Patalan numbers.
Original entry on oeis.org
1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
Offset: 0
-
A218540 := proc(n)
option remember;
if n <=2 then
1;
elif n = 3 then
5 ;
else
(n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
-%/n/(n+2)/(n-1) ;
end if;
end proc:
-
a[n_] := 3^(2*n-2-Floor[n/2]) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)
Comments