cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A008636 Number of partitions of n into at most 7 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241, 13534, 14950, 16475, 18138
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Also, the number of partitions of n into parts <= 7: a(n) = A026820(n, 7). - Reinhard Zumkeller, Jan 21 2010
Counts unordered closed walks of weight n on a single vertex graph with 7 loops of weights 1, 2, 3, 4, 5, 6 and 7. - David Neil McGrath, Apr 11 2015
Number of different distributions of n+28 identical balls in 7 boxes as x,y,z,p,q,m,n where 0 < x < y < z < p < q < m < n. - Ece Uslu and Esin Becenen, Jan 11 2016

Examples

			There are 28 partitions of 9 into parts less than or equal to 7. These are (72)(711)(63)(621)(6111)(54)(531)(522)(5211)(51111)(441)(432)(4311)(4221)(42111)(411111)(333)(3321)(33111)(3222)(32211)(321111)(3111111)(22221)(222111)(2211111)(21111111)(111111111). - _David Neil McGrath_, Apr 11 2015
a(3) = 3, i.e., {1,2,3,4,5,7,9}, {1,2,3,4,6,7,8}, {1,2,3,4,5,6,10}. Number of different distributions of 31 identical balls in 7 boxes as x,y,z,p,q,m,n where 0 < x < y < z < p < q < m < n. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Programs

  • Maple
    with(combstruct):ZL8:=[S,{S=Set(Cycle(Z,card<8))}, unlabeled]: seq(count(ZL8,size=n),n=0..48); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=7)},unlabelled]: seq(combstruct[count](B, size=n), n=0..48); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 7} ], {x, 0, 60} ], x ]
  • PARI
    {a(n)=(2*n^6+168*n^5+5530*n^4+90160*n^3+754299*n^2+(2988020+44800*(1-n%3))*n+6654375+1575*(3*n^2+84*n+511)*(-1)^n)\7257600}; \\ Tani Akinari, May 27 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
a(n) = A008284(n+7, 7), n >= 0.
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28). - David Neil McGrath, Apr 11 2015
a(n+7) = a(n) + A001402(n). - Ece Uslu, Esin Becenen, Jan 11 2016
a(n) = A026813(n+7). - R. J. Mathar, Feb 13 2019
From Vladimír Modrák, Jul 30 2022: (Start)
a(n) = Sum_{p=0..floor(n/7)} Sum_{m=0..floor(n/6)} Sum_{k=0..floor(n/5)} Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0, n + 1 - 3*i - 4*j - 5*k - 6*m - 7*p))/2).
a(n) = Sum_{m=0..floor(n/7)} Sum_{k=0..floor(n/6)} Sum_{j=0..floor(n/5)} Sum_{i=0..floor(n/4)} floor(((max(0, n + 3 - 4*i - 5*j - 6*k - 7*m))^2+4)/12). (End)

Extensions

More terms from Robert G. Wilson v, Dec 11 2000

A145574 Array a(n,m) for number of partitions of n>=2 with m parts having no part 1. Hence m=1..floor(n/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 1, 1, 4, 4, 2, 1, 1, 4, 5, 3, 1, 1, 5, 7, 5, 2, 1, 1, 5, 8, 6, 3, 1, 1, 6, 10, 9, 5, 2, 1, 1, 6, 12, 11, 7, 3, 1, 1, 7, 14, 15, 10, 5, 2, 1, 1, 7, 16, 18, 13, 7, 3, 1, 1, 8, 19, 23, 18, 11, 5, 2, 1, 1, 8, 21, 27, 23, 14, 7, 3, 1, 1, 9, 24, 34, 30
Offset: 2

Views

Author

Wolfdieter Lang and Malin Sjodahl, Mar 06 2009

Keywords

Comments

The row lengths sequence is floor(n/2) = [1,1,2,2,3,3,4,4,...], see A008619(n-1), n>=2.
Obtained from the characteristic partition array A145573 by summing in row n>=2 over entries belonging to like parts number m.
The column sequences give A000012, A004526, A001399, A001400, A001401, A001402, A026813 for m=1..7.

Examples

			1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 2, 1;
1, 3, 3, 1;
1, 4, 4, 2, 1;
		

Crossrefs

Cf. A145573, A002865 (row sums).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(2*t>n or t*i b(n, n, m):
    seq(seq(a(n, m), m=1..iquo(n, 2)), n=2..30); # Alois P. Heinz, Oct 18 2012
  • Mathematica
    nn=15; f[list_]:=Select[list,#>0&]; p=Product[1/(1-y x^i), {i, 2, nn}]; Drop[Map[f, CoefficientList[Series[p, {x, 0, nn}], {x, y}]], 1]//Grid  (* Geoffrey Critzer, Sep 23 2012 *)
  • Sage
    # Prints the table; cf. A011973.
    for n in (2..20): [Partitions(n, length=m, min_part=2).cardinality() for m in (1..n//2)]  # Peter Luschny, Oct 18 2012

Formula

a(n,m) = sum over entries of A145573(n,k) array which belong to partitions with part number m, for m=1..floor(n/2)). Note that partitions with parts number m>floor(n/2) have always at least one part 1.
G.f.: Product_{i>=2} 1/(1- y*x^i). - Geoffrey Critzer, Sep 23 2012

A008641 Number of partitions of n into at most 12 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0

Views

Author

Keywords

Comments

With a different offset, number of partitions of n in which the greatest part is 12.
Also number of partitions of n into parts <= 12: a(n)=A026820(n,12). [Reinhard Zumkeller, Jan 21 2010]

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

a(n) = A008284(n+12, 12), n >= 0.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12)
    with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ]
    Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]

Formula

G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015

Extensions

More terms from Robert G. Wilson v, Dec 11 2000

A382864 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 4, 3, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 1, 5, 7, 2, 0, 1, 6, 8, 3, 0, 1, 6, 10, 5, 0, 1, 7, 12, 6, 1, 0, 1, 7, 14, 9, 1, 0, 1, 8, 16, 11, 2, 0, 1, 8, 19, 15, 3, 0, 1, 9, 21, 18, 5, 0, 1, 9, 24, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  1;
  0, 1, 3,  2;
  0, 1, 4,  3;
  0, 1, 4,  4, 1;
  0, 1, 5,  5, 1;
  0, 1, 5,  7, 2;
  0, 1, 6,  8, 3;
  0, 1, 6, 10, 5;
  0, 1, 7, 12, 6, 1;
  ...
		

Crossrefs

Row sums give A000009.
Columns 0..10 give A000007, A000012, A004526(n-1), A069905(n-3), A026810(n-6), A026811(n-10), A026812(n-15), A026813(n-21), A026814(n-28), A026815(n-36), A026816(n-45).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-x^j).
T(n,k) = |A292047(n,k)| = |A292049(n,k)|.
Previous Showing 21-24 of 24 results.