cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A128797 (n^2-n)*3^n.

Original entry on oeis.org

0, 0, 18, 162, 972, 4860, 21870, 91854, 367416, 1417176, 5314410, 19486170, 70150212, 248714388, 870500358, 3013270470, 10331213040, 35126124336, 118550669634, 397493421714, 1324978072380, 4393348345260, 14498049539358
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^2-n)*3^n: n in [0..25]]; // Vincenzo Librandi, Feb 10 2013
  • Mathematica
    CoefficientList[Series[18 x^2/(1 - 3 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2013 *)
    LinearRecurrence[{9,-27,27},{0,0,18},40] (* Harvey P. Dale, Dec 15 2014 *)

Formula

G.f.: 18*x^2/(1-3*x)^3. - Vincenzo Librandi, Feb 10 2013
a(n) = 18*A027472(n+1). - R. J. Mathar, Apr 26 2015

A293270 a(n) = n^n*binomial(2*n-1, n).

Original entry on oeis.org

1, 1, 12, 270, 8960, 393750, 21555072, 1413199788, 107961384960, 9418192087590, 923780000000000, 100633991211229476, 12055263261877075968, 1575041416811693275900, 222887966509090352332800, 33962507149515380859375000, 5543988061027763016035205120
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2017

Keywords

Comments

The n-th term of the n-fold convolution of the powers of n.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n^n Binomial[2 n - 1, n], {n, 1, 16}]]
    Join[{1}, Table[(-1)^n n^n Binomial[-n, n], {n, 1, 16}]]
    Table[SeriesCoefficient[1/(1 - n x)^n, {x, 0, n}], {n, 0, 16}]
  • PARI
    a(n) = n^n*binomial(2*n-1, n); \\ Altug Alkan, Oct 04 2017

Formula

a(n) = [x^n] 1/(1 - n*x)^n.
a(n) ~ 2^(2*n-1)*n^n/sqrt(Pi*n).

A381930 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1,2} such that I(x) + W_0(x)*W_1(x) + W_0(x)*W_2(x) + W_1(x)*W_2(x) = k where I(x) is the number of inversions in x and W_i(x) is the number of occurrences of the letter i in x for i={0,1,2}, n>=0, 0<=k<=floor(2n^2/3).

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 0, 6, 7, 8, 2, 1, 3, 0, 0, 6, 9, 12, 18, 12, 12, 6, 3, 3, 0, 0, 0, 6, 6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3, 3, 0, 0, 0, 0, 6, 6, 6, 12, 18, 27, 33, 52, 62, 77, 82, 86, 75, 68, 48, 35, 19, 11, 2, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 10 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A342245(n).
Sum_{k>=0} T(n,k)*q^k = the number of ordered pairs (S,T) of idempotent n X n matrices over GF(q) such that ST=TS=S.

Examples

			Triangle T(n,k) begins:
  1;
  3;
  3, 3, 3;
  3, 0, 6, 7, 8,  2,  1;
  3, 0, 0, 6, 9, 12, 18, 12, 12,  6,  3;
  3, 0, 0, 0, 6,  6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3;
  ...
T(3,3) = 7 because we have: {0, 1, 0}, {0, 1, 2}, {0, 2, 0}, {1, 0, 1}, {1, 2, 1}, {2, 0, 2}, {2, 1, 2}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; expand(
         `if`(n=0, z^(i*j+i*k+j*k), b(n-1, i+1, j, k)*z^(j+k)+
          b(n-1, i, j+1, k)*z^k +b(n-1, i, j, k+1)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 10 2025
  • Mathematica
    nn = 6; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, q] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^3, {z, 0, nn}],z]] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^3 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).
From Alois P. Heinz, Mar 10 2025: (Start)
Sum_{k>=0} k * T(n,k) = 9 * A027472(n+1).
Sum_{k>=0} (-1)^k * T(n,k) = A056449(n). (End)
Previous Showing 41-43 of 43 results.