A123369 Number of prime divisors of n-th Conway and Guy second-order harmonic number (counted with multiplicity).
0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 4, 3, 1, 2, 5, 3, 3, 2, 2, 1, 3, 3, 3, 1, 1, 2, 2, 2, 5, 2, 2, 2, 5, 1, 3, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2, 6, 2, 3, 4, 2, 4, 2, 3, 3, 2, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 4, 2, 2, 5, 3, 2, 2, 4, 4, 2, 2, 1, 6, 4, 2, 5, 3, 5, 1, 2, 2, 3, 4, 2, 3, 3, 3, 5
Offset: 1
Examples
a(20) = 5 because A027612(20) = 41054655 = 3 * 5 * 23 * 127 * 937 has 5 prime factors.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, pp. 143 and 258-259.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..150
- Eric Weisstein's World of Mathematics, Harmonic Number, MathWorld, see discussion of Conway and Guy (1996) definition of the second-order harmonic number.
Crossrefs
Programs
-
Mathematica
PrimeOmega[Numerator[Table[Sum[k/(n - k + 1), {k, 1, n}], {n, 1, 50}]]] (* G. C. Greubel, Jan 22 2017 *)
Comments