cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A123369 Number of prime divisors of n-th Conway and Guy second-order harmonic number (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 4, 3, 1, 2, 5, 3, 3, 2, 2, 1, 3, 3, 3, 1, 1, 2, 2, 2, 5, 2, 2, 2, 5, 1, 3, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2, 6, 2, 3, 4, 2, 4, 2, 3, 3, 2, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 4, 2, 2, 5, 3, 2, 2, 4, 4, 2, 2, 1, 6, 4, 2, 5, 3, 5, 1, 2, 2, 3, 4, 2, 3, 3, 3, 5
Offset: 1

Views

Author

Jonathan Vos Post, Nov 09 2006

Keywords

Comments

We must include multiplicity in the definition due to terms such as a(16) = 29889983 = 19 * 31^2 * 1637. The primes are those n for which a(n) = Omega(A027612(n))= 1, namely a(2) = 5, a(3) = 13, a(6) = 223, a(9) = 4861, a(18) = 197698279, a(25) = 25472027467. The semiprimes are those for which a(n) = 2, such as when n = 4, 5, 7, 8, 11, 12, 13, 15, 19, 23, 24. The 3-almost primes are those for which a(n) = 3, as with the "3-brilliant" a(10) = 55991 = 13 * 59 * 73, a(14), a(17), a(21), a(22), a(26).

Examples

			a(20) = 5 because A027612(20) = 41054655 = 3 * 5 * 23 * 127 * 937 has 5 prime factors.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, pp. 143 and 258-259.

Crossrefs

Cf. A001222 Number of prime divisors of n (counted with multiplicity), A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n, A027611, A001008, A002805, A001705, A006675, A093418.

Programs

  • Mathematica
    PrimeOmega[Numerator[Table[Sum[k/(n - k + 1), {k, 1, n}], {n, 1, 50}]]] (* G. C. Greubel, Jan 22 2017 *)

Formula

a(n) = A001222(A027612(n)) = Omega(Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n).

A316297 a(n) = n! times the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

1, 4, 36, 288, 7200, 14400, 705600, 11289600, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 26147806404089610240000, 9439358111876349296640000
Offset: 1

Views

Author

Matthew Campbell, Jun 29 2018

Keywords

Examples

			a(4) = 4! * A002805(4) = 24 * 12 = 288.
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> denom(H(n))*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jul 21 2018
  • Mathematica
    a[n_] := n! Denominator@HarmonicNumber@n; Array[a, 18] (* Robert G. Wilson v, Jun 30 2018 *)
  • PARI
    a(n) = n! * denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Aug 12 2018

Formula

a(n) = A000142(n) * A002805(n).

A368810 a(n) = numerator of Sum_{i=1..n} Sum_{j=1..n} (1/i + 1/j).

Original entry on oeis.org

2, 6, 11, 50, 137, 147, 363, 1522, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 4873118, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Mats Granvik, Jan 06 2024

Keywords

Crossrefs

Cf. A027611, A096620 (denominators), A193758.

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/i + 1/j, {i, 1, n}], {j, 1, n}], {n, 1, 29}]]
  • Python
    from sympy import harmonic
    def A368810(n): return ((n<<1)*harmonic(n)).p # Chai Wah Wu, Feb 04 2024

A300910 Expansion of e.g.f. 1/(1 - x)^(x/(1 - x)^2).

Original entry on oeis.org

1, 0, 2, 15, 116, 1070, 11754, 149436, 2145296, 34193736, 598061160, 11377384920, 233732130312, 5153974126704, 121354505626704, 3037419444974040, 80497938647953920, 2251124265581428800, 66225476356207660224, 2044005966844402035456, 66025689709572751040640, 2227221130525199246067840, 78301158190416233445985920
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Exponential transform of A006675.

Examples

			1/(1 - x)^(x/(1 - x)^2) = 1 + 2*x^2/2! + 15*x^3/3! + 116*x^4/4! + 1070*x^5/5! + 11754*x^6/6! + 149436*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1-x)^(x/(1-x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x)^(x/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k k! (HarmonicNumber[k] - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: A(x) = exp(B(x)*C(x)), where B(x) is the g.f. of the sequence {0, 1, 2, 3, 4, 5, ...} and C(x) is the g.f. of the sequence {0, 1, 1/2, 1/3, 1/4, 1/5, ...}.
a(0) = 1; a(n) = Sum_{k=1..n} k*k!*(H(k)-1)*binomial(n-1,k-1)*a(n-k), where H(k) is the k-th harmonic number.
Previous Showing 21-24 of 24 results.