A255297
Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 035 when started with a single ON cell.
Original entry on oeis.org
1, 4, 4, 14, 4, 16, 14, 46, 4, 16, 16, 56, 14, 56, 46, 146, 4, 16, 16, 56, 16, 64, 56, 184, 14, 56, 56, 196, 46, 184, 146, 454, 4, 16, 16, 56, 16, 64, 56, 184, 16, 64, 64, 224, 56, 224, 184, 584, 14, 56, 56, 196, 56, 224, 196, 644, 46, 184, 184, 644
Offset: 0
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
a27649[n_] := 2(3^n) - 2^n;
Table[Times @@ (a27649[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 59}] (* Jean-François Alcover, Sep 15 2018 *)
A336703
Rectangular array read by antidiagonals. T(n,k) is the number of length k walks from {} to [n] in the digraph representation of the superset/subset relation on P([n]) the powerset of [n], n>=0, k>=0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 8, 14, 8, 1, 0, 1, 16, 50, 46, 16, 1, 0, 1, 32, 178, 278, 146, 32, 1, 0, 1, 64, 634, 1666, 1454, 454, 64, 1, 0, 1, 128, 2258, 9998, 14230, 7358, 1394, 128, 1, 0, 1, 256, 8042, 59986, 139750, 115546, 36590, 4246, 256, 1, 0
Offset: 0
1, 1, 1, 1, 1, 1, 1, 1, 1,...
0, 1, 2, 4, 8, 16, 32, 64, 128,...
0, 1, 4, 14, 50, 178, 634, 2258, 8042,...
0, 1, 8, 46, 278, 1666, 9998, 59986, 359918,...
0, 1, 16, 146, 1454, 14230, 139750, 1371494, 13461638,...
Cf.
A027649 (column k=3, number of edges in the digraph).
-
(* gives first 7 rows and 11 columns in about 3 minutes *)
Table[a = Subsets[Range[n]];f[list_] := Map[Apply[SubsetQ, #] &, list];
G = Map[f,Table[Table[{a[[i]], a[[j]]}, {i, 1, 2^n}], {j, 1, 2^n}]] //
Boole; H = (G - IdentityMatrix[2^n]) + Transpose[(G - IdentityMatrix[2^n]) + IdentityMatrix[2^n]];b = Inverse[IdentityMatrix[2^n] - z H] // Simplify; MatrixForm[b]; nn = 10; CoefficientList[Series[b[[1, 2^n]], {z, 0, nn}], z], {n, 0,6}] // Grid
A338131
Triangle read by rows, T(n, k) = k^(n - k) + Sum_{i = 1..n-k} k^(n - k - i)*2^(i - 1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 14, 5, 1, 32, 32, 48, 46, 22, 6, 1, 64, 64, 112, 146, 92, 32, 7, 1, 128, 128, 256, 454, 376, 164, 44, 8, 1, 256, 256, 576, 1394, 1520, 828, 268, 58, 9, 1, 512, 512, 1280, 4246, 6112, 4156, 1616, 410, 74, 10, 1
Offset: 0
The number triangle T(n, k) for 0 <= k <= n starts:
n\ k : 0 1 2 3 4 5 6 7 8 9 10
=========================================================================
0 : 1
1 : 1 1
2 : 2 2 1
3 : 4 4 3 1
4 : 8 8 8 4 1
5 : 16 16 20 14 5 1
6 : 32 32 48 46 22 6 1
7 : 64 64 112 146 92 32 7 1
8 : 128 128 256 454 376 164 44 8 1
9 : 256 256 576 1394 1520 828 268 58 9 1
10 : 512 512 1280 4246 6112 4156 1616 410 74 10 1
-
T := proc(n, k) if k = 0 then `if`(n = 0, 1, 2^(n-1)) elif k = 2 then n*2^(n-3)
else (k^(n-k)*(1-k) + 2^(n-k))/(2-k) fi end:
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 29 2020
-
T(n,k) = k^(n-k) + sum(i=1, n-k, k^(n-k-i) * 2^(i-1));
matrix(7,7, n, k, if(n>=k, T(n-1,k-1), 0)) \\ to see the triangle \\ Michel Marcus, Oct 12 2020
A385178
Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0
Triangle begins:
0;
1, 1;
3, 4, 5;
7, 10, 14, 19;
15, 22, 32, 46, 65;
31, 46, 68, 100, 146, 211;
63, 94, 140, 208, 308, 454, 665;
127, 190, 284, 424, 632, 940, 1394, 2059;
255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305;
511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
...
-
/* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
-
T:= proc(n,k) option remember;
`if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 24 2025
-
t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)
Comments