cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A255297 Number of ON cells after n generations of the odd-rule cellular automaton defined by OddRule 035 when started with a single ON cell.

Original entry on oeis.org

1, 4, 4, 14, 4, 16, 14, 46, 4, 16, 16, 56, 14, 56, 46, 146, 4, 16, 16, 56, 16, 64, 56, 184, 14, 56, 56, 196, 46, 184, 146, 454, 4, 16, 16, 56, 16, 64, 56, 184, 16, 64, 64, 224, 56, 224, 184, 584, 14, 56, 56, 196, 56, 224, 196, 644, 46, 184, 184, 644
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027649.

Programs

  • Mathematica
    a27649[n_] := 2(3^n) - 2^n;
    Table[Times @@ (a27649[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 59}] (* Jean-François Alcover, Sep 15 2018 *)

Formula

Run length transform of A027649.

A336703 Rectangular array read by antidiagonals. T(n,k) is the number of length k walks from {} to [n] in the digraph representation of the superset/subset relation on P([n]) the powerset of [n], n>=0, k>=0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 8, 14, 8, 1, 0, 1, 16, 50, 46, 16, 1, 0, 1, 32, 178, 278, 146, 32, 1, 0, 1, 64, 634, 1666, 1454, 454, 64, 1, 0, 1, 128, 2258, 9998, 14230, 7358, 1394, 128, 1, 0, 1, 256, 8042, 59986, 139750, 115546, 36590, 4246, 256, 1, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jul 31 2020

Keywords

Comments

The superset/subset relation on P([n]) is defined as: for all A,B in P([n]), A ~ B iff A is a subset of B or B is a subset of A.

Examples

			1, 1, 1,  1,   1,    1,     1,      1,       1,...
0, 1, 2,  4,   8,    16,    32,     64,      128,...
0, 1, 4,  14,  50,   178,   634,    2258,    8042,...
0, 1, 8,  46,  278,  1666,  9998,   59986,   359918,...
0, 1, 16, 146, 1454, 14230, 139750, 1371494, 13461638,...
		

Crossrefs

Cf. A027649 (column k=3, number of edges in the digraph).

Programs

  • Mathematica
    (* gives first 7 rows and 11 columns in about 3 minutes *)
    Table[a = Subsets[Range[n]];f[list_] := Map[Apply[SubsetQ, #] &, list];
      G = Map[f,Table[Table[{a[[i]], a[[j]]}, {i, 1, 2^n}], {j, 1, 2^n}]] //
        Boole; H = (G - IdentityMatrix[2^n]) + Transpose[(G - IdentityMatrix[2^n]) + IdentityMatrix[2^n]];b = Inverse[IdentityMatrix[2^n] - z H] // Simplify; MatrixForm[b]; nn = 10; CoefficientList[Series[b[[1, 2^n]], {z, 0, nn}], z], {n, 0,6}] // Grid

A338131 Triangle read by rows, T(n, k) = k^(n - k) + Sum_{i = 1..n-k} k^(n - k - i)*2^(i - 1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 8, 8, 8, 4, 1, 16, 16, 20, 14, 5, 1, 32, 32, 48, 46, 22, 6, 1, 64, 64, 112, 146, 92, 32, 7, 1, 128, 128, 256, 454, 376, 164, 44, 8, 1, 256, 256, 576, 1394, 1520, 828, 268, 58, 9, 1, 512, 512, 1280, 4246, 6112, 4156, 1616, 410, 74, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 11 2020

Keywords

Comments

This number triangle is case s = 2 of the triangles T(s; n,k) depending on some fixed integer s. Here are several (generalized) formulas and properties (attention: negative values are possible if s < 0):
(1) T(s; n,k) = k^(n-k) + Sum_{i=1..n-k} k^(n-k-i)*s^(i-1) for 0<=k<=n;
(2) T(s; n,n) = 1 for n >= 0, and T(s; n,n-1) = n for n > 0;
(3) T(s; n+1,k) = k * T(s; n,k) + s^(n-k) for 0<=k<=n;
(4) T(s; n,k) = (k+s) * T(s; n-1,k) - s*k * T(s; n-2,k) for 0<=k<=n-2;
(5) G.f. of column k: Sum_{n>=k} T(s; n,k)*t^n = ((1-(s-1)*t)/(1-s*t))
*(t^k/(1-k*t)) when t^k/(1-k*t) is g.f. of column k>=0 of A004248.

Examples

			The number triangle T(n, k) for 0 <= k <= n starts:
n\ k :    0     1      2      3      4      5      6     7    8    9   10
=========================================================================
   0 :    1
   1 :    1     1
   2 :    2     2      1
   3 :    4     4      3      1
   4 :    8     8      8      4      1
   5 :   16    16     20     14      5      1
   6 :   32    32     48     46     22      6      1
   7 :   64    64    112    146     92     32      7     1
   8 :  128   128    256    454    376    164     44     8    1
   9 :  256   256    576   1394   1520    828    268    58    9    1
  10 :  512   512   1280   4246   6112   4156   1616   410   74   10   1
		

Crossrefs

Cf. A004248.
For columns k = 0, 1, 2, 3, 4 see A011782, A000079, A001792, A027649, A010036 respectively.

Programs

  • Maple
    T := proc(n, k) if k = 0 then `if`(n = 0, 1, 2^(n-1)) elif k = 2 then n*2^(n-3)
    else (k^(n-k)*(1-k) + 2^(n-k))/(2-k) fi end:
    seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Oct 29 2020
  • PARI
    T(n,k) = k^(n-k) + sum(i=1, n-k, k^(n-k-i) * 2^(i-1));
    matrix(7,7, n, k, if(n>=k, T(n-1,k-1), 0)) \\ to see the triangle \\ Michel Marcus, Oct 12 2020

Formula

T(n,k) = ((k-1) * k^(n-k) - 2^(n-k)) / (k-2) if k <> 2, and T(n,2) = n * 2^(n-3) for n >= k.
T(n,n) = 1 for n >= 0, and T(n,n-1) = n for n > 0.
T(n+1,k) = k * T(n,k) + 2^(n-k) for 0 <= k <= n.
T(n,k) = (k+2) * T(n-1,k) - 2*k * T(n-2,k) for 0 <= k <= n-2.
T(n,k) = k * T(n-1,k) + T(n-1,k-1) - (k-1) * T(n-2,k-1) for 0 < k < n.
G.f. of column k >= 0: Sum_{n>=k} T(n,k) * t^n = ((1-t) / (1-2*t)) * (t^k / (1-k*t)) when t^k / (1-k*t) is g. f. of column k of A004248.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((1-t) / (1-2*t)) * (Sum_{k>=0} (x*t)^k / (1-k*t)).

A385178 Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0

Views

Author

Paul Curtz, Jun 20 2025

Keywords

Examples

			Triangle begins:
    0;
    1,   1;
    3,   4,    5;
    7,  10,   14,   19;
   15,  22,   32,   46,   65;
   31,  46,   68,  100,  146,  211;
   63,  94,  140,  208,  308,  454,  665;
  127, 190,  284,  424,  632,  940, 1394, 2059;
  255, 382,  572,  856, 1280, 1912, 2852, 4246,  6305;
  511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
  ...
		

Crossrefs

Columns k=0..2: A000225, A033484, A053209 (sans 1).
Diagonals: A001047, A027649, A053581 (sans 1), A291012 (sans 2).

Programs

  • Magma
    /* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
  • Maple
    T:= proc(n,k) option remember;
         `if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)

Formula

T(n,n) = 3^n - 2^n = A001047(n).
T(n,k) = T(n,k+1) - T(n-1,k) for 0 <= k < n.
T(n,k) = 2^(n-k)*3^k - 2^k = A036561(n,k) - A059268(n,k).
T(2n,n) = A248216(n+1).
Previous Showing 41-44 of 44 results.