cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A129323 Second column of PE^2.

Original entry on oeis.org

0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,2] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129324 Third column of PE^2.

Original entry on oeis.org

0, 0, 1, 6, 36, 220, 1410, 9534, 68040, 511704, 4046310, 33560010, 291244668, 2638581972, 24901833866, 244333004790, 2487900487440, 26245651191600, 286408960814862, 3228529392965250, 37544229610105220, 449858650676764140
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,3]; with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,3].
E.g.f.: (x^2/2) * exp(2 * (exp(x) - 1)). - Ilya Gutkovskiy, Jul 11 2020

Extensions

More terms from R. J. Mathar, May 30 2008

A129325 Fourth column of PE^2.

Original entry on oeis.org

0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,4] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,4]

Extensions

More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A129327 Second column of PE^3.

Original entry on oeis.org

0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129328 Third column of PE^3.

Original entry on oeis.org

0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129329 Fourth column of PE^3.

Original entry on oeis.org

0, 0, 0, 1, 12, 120, 1140, 10815, 104496, 1037484, 10627560, 112508550, 1231481460, 13933510734, 162864103584, 1965078765195, 24453461392080, 313549334233440, 4138796594051568, 56188737057169593, 783876449182595400
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,4]
E.g.f.: (x^3/6) * exp(3 * (exp(x) - 1)). - Ilya Gutkovskiy, Jul 11 2020

Extensions

More terms from R. J. Mathar, May 30 2008

A129331 Second column of PE^4.

Original entry on oeis.org

0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129332 Third column of PE^4.

Original entry on oeis.org

0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129333 Fourth column of PE^4.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,4]

Extensions

More terms from R. J. Mathar, May 30 2008

A221159 a(n) = Sum_{i=0..n} Stirling2(n,i)*2^(3i).

Original entry on oeis.org

1, 8, 72, 712, 7624, 87496, 1067976, 13781448, 187104200, 2661876168, 39549629384, 611918940616, 9834596715464, 163824830616008, 2823080829871048, 50238768569014728, 921839901090823112, 17416746966515278280, 338394913332895863752, 6753431112631087835592, 138296031340416209103816
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2013

Keywords

Comments

The number of ways of putting n labeled balls into a set of bags and then putting the bags into 8 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

Formula

E.g.f.: exp(8*(exp(x) - 1)). - Peter Bala, Mar 23 2013
a(n) ~ n^n * exp(n/LambertW(n/8)-8-n) / (sqrt(1+LambertW(n/8)) * LambertW(n/8)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 8^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 11 2019
Previous Showing 11-20 of 39 results. Next