cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A269661 a(n) = Product_{i=1..n} (5^i - 4^i).

Original entry on oeis.org

1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1

Views

Author

Bob Selcoe, Mar 02 2016

Keywords

Crossrefs

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7), A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A263394 (j=3, k=2), A269576 (j=4, k=3).

Programs

  • Magma
    [&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
    
  • Mathematica
    Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
    Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
    FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
  • PARI
    a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016

Formula

a(n) = Product_{i=1..n} A005060(i).
a(n) = 5^(binomial(n+1,2))*(4/5;4/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Mar 05 2016
a(n) ~ c * 5^(n*(n+1)/2), where c = QPochhammer(4/5) = 0.00336800585242312126... . - Vaclav Kotesovec, Oct 10 2016

A320354 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Examples

			Square array begins:
  1,     1,        1,          1,            1,             1,  ...
  0,     1,        2,          3,            4,             5,  ...
  0,     3,       16,         45,           96,           175,  ...
  0,    21,      416,       2835,        11904,         37625,  ...
  0,   315,    33280,     722925,      7428096,      48724375,  ...
  0,  9765,  8053760,  739552275,  23205371904,  378832015625,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten

Formula

G.f. of column k: Sum_{i>=0} k^(i*(i+1)/2)*x^i / Product_{j=0..i} (1 + k^j*x).
For asymptotics of column k see comment from Vaclav Kotesovec in A027880.
Previous Showing 21-22 of 22 results.