A156235
Number of irreflexive binary relations on the power set P(N) of an n-element set N as restricted below.
Original entry on oeis.org
1, 1, 4, 198, 209342
Offset: 0
One of the 209342 irreflexive relations corresponding to a(4) is
R = {({1},{2}), ({2},{1}), ({3,4},{1,2}), ({1,4},{3}), ({2},{3,4})}.
Notice how the last three ordered pairs correspond to jointly giving and/or receiving gifts.
A245020
Number of ordered n-tuples of positive integers, whose minimum is 0 and maximum is 5.
Original entry on oeis.org
0, 2, 30, 302, 2550, 19502, 140070, 963902, 6433590, 41983502, 269335110, 1705278302, 10686396630, 66425568302, 410223570150, 2520229093502, 15417960407670, 93999281613902, 571487645261190, 3466523088409502, 20987674370482710, 126870924446280302
Offset: 1
For n=2 the a(2)=2 solutions are (0,5) and (5,0).
-
LinearRecurrence[{15,-74,120},{0,2,30},30] (* Harvey P. Dale, Nov 20 2020 *)
-
concat(0, Vec(-2*x^2/((4*x-1)*(5*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Sep 18 2014
A385178
Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0
Triangle begins:
0;
1, 1;
3, 4, 5;
7, 10, 14, 19;
15, 22, 32, 46, 65;
31, 46, 68, 100, 146, 211;
63, 94, 140, 208, 308, 454, 665;
127, 190, 284, 424, 632, 940, 1394, 2059;
255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305;
511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
...
-
/* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
-
T:= proc(n,k) option remember;
`if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 24 2025
-
t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)
Comments