cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A284602 Numbers k such that the decimal representation of 1/k is either finite or has even period.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 32, 33, 34, 35, 38, 39, 40, 42, 44, 46, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 63, 64, 65, 66, 68, 69, 70, 73, 76, 77, 78, 80, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 109, 110, 112, 113, 114, 115
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2017

Keywords

Comments

All numbers of the form 2^i*5^j with i, j >= 0 are in this sequence (numbers with a finite decimal expansion).
From Robert G. Wilson v, Apr 02 2017: (Start)
If k is in the sequence, then so are 2k and 5k.
The complement of A284601.
Primitives: 1, 7, 11, 13, 17, 19, 21, 23, 29, 33, 39, 47, 49, 51, 57, 59, 61, 63, ..., .
(End)

Examples

			14 is in the sequence because 1/14 = 0.0714285(714285)..., whose period is 6, an even number.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[115], Mod[Length[RealDigits[1/#][[1, -1]]], 2] == 0 & ]

A019365 Primes with primitive root 40.

Original entry on oeis.org

7, 11, 17, 19, 23, 29, 47, 59, 73, 97, 101, 103, 109, 131, 137, 139, 149, 167, 179, 193, 229, 233, 257, 263, 269, 331, 349, 353, 383, 389, 421, 433, 461, 463, 491, 499, 503, 509, 541, 571, 577, 593, 607, 617, 619, 659, 661, 673, 701, 709, 727, 743, 829, 857, 859, 863
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A028416. - Davide Rotondo, Dec 31 2024

Crossrefs

Cf. A028416.

Programs

  • Mathematica
    pr=40; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
  • PARI
    isok(p) = isprime(p) && (gcd(p,40)==1) && (znorder(Mod(40, p)) == p-1); \\ Michel Marcus, Jan 26 2025

A186640 Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913).

Original entry on oeis.org

11, 13, 73, 89, 101, 103, 127, 137, 139, 157, 197, 211, 241, 251, 281, 293, 331, 349, 353, 373, 401, 409, 421, 449, 457, 463, 521, 557, 569, 601, 607, 617, 641, 653, 661, 673, 677, 691, 739, 761, 769, 809, 829, 859, 877, 881, 929, 967, 997, 1009, 1049, 1061
Offset: 1

Views

Author

Jani Melik, Feb 24 2011

Keywords

Crossrefs

Cf. A028416.

Programs

  • Maple
    f1_d := proc(n) local st, period:
    st := ithprime(n):
    period := numtheory[order](10,st):
    if (modp(period,2) = 0) then
       if (st-1 <> period) then
          RETURN(st):
       fi:
    fi: end:  seq(f1_d(n), n=1..200);
  • Mathematica
    Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* T. D. Noe, Oct 01 2012 *)
  • PARI
    is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ Charles R Greathouse IV, Oct 01 2012

Formula

p in A028416, but not A001913.
Previous Showing 11-13 of 13 results.