cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A293007 Expansion of 2*x^2 / (1-2*x-2*x^2).

Original entry on oeis.org

0, 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432
Offset: 0

Views

Author

J. Devillet, Sep 28 2017

Keywords

Comments

Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have neutral and annihilator elements.

Crossrefs

Essentially the same as A028860 and A152035.

Programs

  • PARI
    concat(vector(2), Vec(2*x^2 / (1-2*x-2*x^2) + O(x^50))) \\ Colin Barker, Sep 28 2017

Formula

a(n) = 2*A002605(n-1), a(0) = 0.
a(n) = A028860(n+1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = ((1-sqrt(3))^n*(1+sqrt(3)) + (-1+sqrt(3))*(1+sqrt(3))^n) / (2*sqrt(3)) for n>0.
a(n) = 2*a(n-1) + 2*a(n-2) for n>2.
(End)

A152035 Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).

Original entry on oeis.org

1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
Offset: 0

Views

Author

Roger L. Bagula, Nov 20 2008

Keywords

Comments

Essentially same as A028860. - Philippe Deléham, Sep 21 2009

Crossrefs

Cf. A028860. Row sums of A322942.

Programs

  • Magma
    [1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
    
  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end:
    seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
  • Mathematica
    f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
    CoefficientList[Series[(1-2x^2)/(1-2x-2x^2),{x,0,40}],x] (* Harvey P. Dale, Sep 23 2014 *)
    LinearRecurrence[{2,2},{1,2,4},40] (* Harvey P. Dale, May 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A152035
        if n<3: return (1,2,4)[n]
        else: return 2*(a(n-1) + a(n-2))
    [a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(n) = 2*(a(n-1) + a(n-2)) for n >= 3. - Peter Luschny, Jan 03 2019

Extensions

Edited by N. J. A. Sloane, Apr 11 2009, based on comments from Philippe Deléham and R. J. Mathar
More terms from Philippe Deléham, Sep 21 2009

A106434 The (1,1)-entry of the matrix A^n, where A = [0,1;2,3].

Original entry on oeis.org

0, 2, 6, 22, 78, 278, 990, 3526, 12558, 44726, 159294, 567334, 2020590, 7196438, 25630494, 91284358, 325114062, 1157910902, 4123960830, 14687704294, 52311034542, 186308512214, 663547605726, 2363259841606, 8416874736270, 29977143892022, 106765181148606
Offset: 1

Views

Author

Roger L. Bagula, May 29 2005

Keywords

Crossrefs

Programs

  • Maple
    a[1]:=0: a[2]:=2: for n from 3 to 25 do a[n]:=3*a[n-1]+2*a[n-2] od: seq(a[n],n=1..25);
  • Mathematica
    LinearRecurrence[{3, 2}, {0, 2}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
  • PARI
    A106434(n)=([0,1;2,3]^n)[1,1] /* M. F. Hasler, Dec 01 2008 */

Formula

a(n) = 3*a(n-1) + 2*a(n-2) for n>=3; a(1)=0, a(2)=2.
O.g.f.: 2*x^2/(1-3*x-2*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 2 * A007482(n-2) for n >= 2.

Extensions

Simplified definition and added cross reference. - M. F. Hasler, Dec 01 2008
Edited by N. J. A. Sloane, May 20 2006 and Dec 04 2008

A305492 a(n) = ((1 + y)^n - (1 - y)^n)/y with y = sqrt(8).

Original entry on oeis.org

0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, 915814, 3504600, 13419898, 51371996, 196683278, 752970528, 2882724002, 11036241700, 42251551414, 161756794728, 619274449354, 2370846461804, 9076614069086, 34749153370800
Offset: 0

Views

Author

Peter Luschny, Jun 02 2018

Keywords

Examples

			Array ((1+y)^n - (1-y)^n)/y with y = sqrt(k).
[k\n]
[1]   1, 2, 4,  8, 16, 32,   64,  128,    256,   512,   1024, ...
[2]   0, 2, 4, 10, 24, 58,  140,  338,    816,  1970,   4756, ...
[3]   0, 2, 4, 12, 32, 88,  240,  656,   1792,  4896,  13376, ...
[4]   0, 2, 4, 14, 40, 122, 364,  1094,  3280,  9842,  29524, ...
[5]   0, 2, 4, 16, 48, 160, 512,  1664,  5376, 17408,  56320, ...
[6]   0, 2, 4, 18, 56, 202, 684,  2378,  8176, 28242,  97364, ...
[7]   0, 2, 4, 20, 64, 248, 880,  3248, 11776, 43040, 156736, ...
[8]   0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, ...
[9]   0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, ...
		

Crossrefs

Let f(n, y) = ((1 + y)^n - (1 - y)^n)/y.
f(n, 1 ) = A000079(n);
f(n, sqrt(2)) = A163271(n+1);
f(n, sqrt(3)) = A028860(n+2);
f(n, 2 ) = A152011(n) for n>0;
f(n, sqrt(5)) = A103435(n);
f(n, sqrt(6)) = A083694(n);
f(n, sqrt(7)) = A274520(n);
f(n, sqrt(8)) = a(n);
f(n, 3 ) = A192382(n+1);
Cf. A305491.
Equals 2 * A015519.

Programs

  • Maple
    egf :=  (n,x) -> 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n):
    ser := series(egf(8,x), x, 26):
    seq(n!*coeff(ser,x, n), n=0..24);
  • Mathematica
    Table[Simplify[((1 + Sqrt[8])^n - (1 - Sqrt[8])^n)/ Sqrt[8]], {n, 0, 24}]
  • PARI
    concat(0, Vec(2*x / (1 - 2*x - 7*x^2) + O(x^40))) \\ Colin Barker, Jun 05 2018

Formula

E.g.f.: 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n) for n = 8.
From Colin Barker, Jun 02 2018: (Start)
G.f.: 2*x / (1 - 2*x - 7*x^2).
a(n) = 2*a(n-1) + 7*a(n-2) for n>1.
(End)

A106568 Expansion of 4*x/(1 - 4*x - 4*x^2).

Original entry on oeis.org

0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360, 782005818097664, 3775858103812096, 18231455687639040
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

This sequence is part of a class of sequences with the properties: a(n) = m*(a(n-1) + a(n-2)) with a(0) = 0 and a(1) = m, g.f.: m*x/(1 - m*x - m*x^2), and have the Binet form m*(alpha^n - beta^n)/(alpha - beta) where 2*alpha = m + sqrt(m^2 + 4*m) and 2*beta = p - sqrt(m^2 + 4*m). - G. C. Greubel, Sep 06 2021

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)): A000045 (m=1), A028860 (m=2), A106435 (m=3), A094013 (m=4), A106565 (m=5), A221461 (m=6), A221462 (m=7).

Programs

  • Magma
    [n le 2 select 4*(n-1) else 4*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106568 := n -> ifelse(n=0, 0, 4^(n)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1)):
    seq(simplify(A106568(n)), n = 0..24);  # Peter Luschny, Mar 30 2025
  • Mathematica
    LinearRecurrence[{4,4}, {0,4}, 40] (* G. C. Greubel, Sep 06 2021 *)
  • Sage
    [2^(n+1)*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Sep 06 2021

Formula

a(n) = 4 * A057087(n).
a(n) = A094013(n+1). - R. J. Mathar, Aug 24 2008
From Philippe Deléham, Sep 19 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) for n > 2; a(0) = 0, a(1)=4.
G.f.: 4*x/(1 - 4*x - 4*x^2). (End)
G.f.: Q(0) - 1, where Q(k) = 1 + 2*(1+2*x)*x + 2*(2*k+3)*x - 2*x*(2*k+1 +2*x+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2^(n+1)*A000129(n). - G. C. Greubel, Sep 06 2021
a(n) = 4^n*hypergeom([(1-n)/2, 1-n/2], [1-n], -1) for n > 0. - Peter Luschny, Mar 30 2025

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Simpler name using o.g.f. by Joerg Arndt, Oct 05 2013
Previous Showing 11-15 of 15 results.