cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A340847 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n) with subparts.

Original entry on oeis.org

4, 6, 7, 10, 9, 13, 11, 14, 14, 15, 13, 23, 13, 17, 21, 22, 15, 26, 15, 25, 23, 21, 27, 35, 22, 21, 25, 29, 19, 41, 19, 30
Offset: 1

Views

Author

Omar E. Pol, Jan 24 2021

Keywords

Comments

Theorem: Indices of even terms give A028982. Indices of odd terms give A028983.
If A001227(n) is odd then a(n) is even.
If A001227(n) is even then a(n) is odd.
The above sentences arise that the diagram is always symmetric for any value of n hence the number of edges is always an even number. Also from Euler's formula.
For another version see A340833 from which first differs at a(6).
For the definition of subparts see A279387. For more information about the subparts see also A237271, A280850, A280851, A296508, A335616.
Note that in this version of the diagram of the symmetric representation of sigma(n) all regions are called "subparts". The number of subparts equals A001227(n).

Examples

			Illustration of initial terms:
.                                                          _ _ _ _
.                                            _ _ _        |_ _ _  |_
.                                _ _ _      |_ _ _|             | |_|_
.                      _ _      |_ _  |_          |_ _          |_ _  |
.              _ _    |_ _|_        |_  |           | |             | |
.        _    |_  |       | |         | |           | |             | |
.       |_|     |_|       |_|         |_|           |_|             |_|
.
n:       1      2        3          4           5               6
a(n):    4      6        7         10           9              13
.
For n = 6 the diagram has 13 vertices so a(6) = 13.
On the other hand the diagram has 14 edges and two subparts or regions, so applying Euler's formula we have that a(6) = 14 - 2 + 1 = 13.
.
.                                                  _ _ _ _ _
.                            _ _ _ _ _            |_ _ _ _ _|
.        _ _ _ _            |_ _ _ _  |                     |_ _
.       |_ _ _ _|                   | |_                    |_  |
.               |_                  |_  |_ _                  |_|_ _
.                 |_ _                |_ _  |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   |_|                   |_|                     |_|
.
n:              7                    8                      9
a(n):          11                   14                     14
.
For n = 9 the diagram has 14 vertices so a(9) = 14.
On the other hand the diagram has 16 edges and three subparts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
.  n  a(n)                             Diagram
--------------------------------------------------------------------------
            _
   1   4   |_|  _
              _| |  _
   2   6     |_ _| | |  _
                _ _|_| | |  _
   3   7       |_ _|  _| | | |  _
                  _ _|  _| | | | |  _
   4  10         |_ _ _|  _|_| | | | |  _
                    _ _ _|  _ _| | | | | |  _
   5   9           |_ _ _| |  _ _| | | | | | |  _
                      _ _ _| |_|  _|_| | | | | | |  _
   6  13             |_ _ _ _|  _|  _ _| | | | | | | |  _
                        _ _ _ _|  _|  _ _| | | | | | | | |  _
   7  11               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
                          _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
   8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
                            _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
   9  14                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
                              _ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | |
  10  15                     |_ _ _ _ _ _| |  _|  _| |  _ _|_| | | | | | |
                                _ _ _ _ _ _| |  _|  _| |  _ _ _| | | | | |
  11  13                       |_ _ _ _ _ _| | |_ _|  _| |  _ _ _| | | | |
                                  _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
  12  23                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
                                    _ _ _ _ _ _ _| |  _| |  _ _| |  _ _ _|
  13  13                           |_ _ _ _ _ _ _| | |  _| |_|  _| |
                                      _ _ _ _ _ _ _| | |_ _|  _|  _|
  14  17                             |_ _ _ _ _ _ _ _| |  _ _|  _|
                                        _ _ _ _ _ _ _ _| |  _ _|
  15  21                               |_ _ _ _ _ _ _ _| | |
                                          _ _ _ _ _ _ _ _| |
  16  22                                 |_ _ _ _ _ _ _ _ _|
...
		

Crossrefs

Cf. A001227 (number of subparts or regions).
Cf. A340848 (number of edges).
Cf. A340833 (numer of vertices in the diagram only with parts).
Cf. A317293 (total number of vertices in the unified diagram).

Formula

a(n) = A340848(n) - A001227(n) + 1 (Euler's formula).

A347455 Heinz numbers of integer partitions with non-integer alternating product.

Original entry on oeis.org

15, 30, 33, 35, 51, 55, 60, 66, 69, 70, 77, 85, 91, 93, 95, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 154, 155, 161, 165, 170, 177, 182, 186, 187, 190, 201, 203, 204, 205, 209, 210, 215, 217, 219, 220, 221, 231, 238, 240, 246, 247, 249
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has non-integer reverse-alternating product.

Examples

			The terms and their reversed prime indices begin:
     15: (3,2)        102: (7,2,1)        161: (9,4)
     30: (3,2,1)      105: (4,3,2)        165: (5,3,2)
     33: (5,2)        110: (5,3,1)        170: (7,3,1)
     35: (4,3)        119: (7,4)          177: (17,2)
     51: (7,2)        120: (3,2,1,1,1)    182: (6,4,1)
     55: (5,3)        123: (13,2)         186: (11,2,1)
     60: (3,2,1,1)    132: (5,2,1,1)      187: (7,5)
     66: (5,2,1)      135: (3,2,2,2)      190: (8,3,1)
     69: (9,2)        138: (9,2,1)        201: (19,2)
     70: (4,3,1)      140: (4,3,1,1)      203: (10,4)
     77: (5,4)        141: (15,2)         204: (7,2,1,1)
     85: (7,3)        143: (6,5)          205: (13,3)
     91: (6,4)        145: (10,3)         209: (8,5)
     93: (11,2)       154: (5,4,1)        210: (4,3,2,1)
     95: (8,3)        155: (11,3)         215: (14,3)
For example, (4,3,2,1) has alternating product 4/3*2/1 = 8/3, so the Heinz number 210 is in the sequence.
		

Crossrefs

The reciprocal version is A028983, complement A028982.
Factorizations not of this type are counted by A347437.
Partitions not of this type are counted by A347446.
The complement of the reverse reciprocal version is A347451.
The complement in the odd-length case is A347453.
The complement of the reverse version is A347454.
The complement is A347457.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A347461 counts possible alternating products of partitions, reverse A347462.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],!IntegerQ[altprod[Reverse[primeMS[#]]]]&]

A378988 a(n) = 2*n XOR 1+sigma(n), where XOR is bitwise-xor, A003987.

Original entry on oeis.org

0, 0, 3, 0, 13, 1, 7, 0, 28, 7, 27, 5, 21, 5, 7, 0, 49, 12, 51, 3, 11, 9, 55, 13, 18, 31, 31, 1, 37, 117, 31, 0, 115, 115, 119, 20, 109, 113, 119, 11, 121, 53, 123, 13, 21, 21, 111, 29, 88, 58, 47, 11, 93, 21, 39, 9, 35, 47, 75, 209, 69, 29, 23, 0, 215, 21, 195, 247, 235, 29, 199, 84, 217, 231, 235, 21, 251, 53, 207
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Comments

For any hypothetical quasiperfect number q (for which sigma(q) = 2*q+1, see A336701), a(q) would be equal to 2*q XOR 2*q+2 = 2*(q XOR q+1) = 2*A038712(1+q) = A100892(1+q).
See also A000079 and A235796 concerning the "almost perfect" or "least deficient" numbers that give positions of 0's here.

Crossrefs

Cf. A000079 (conjectured to give positions of all 0's), A000396 (positions of 1's), A000203, A003987, A028982 (positions of even terms), A028983 (of odd terms), A038712, A100892, A318467, A336701, A378998, A379009 [= a(n^2)].

Programs

  • Mathematica
    Array[BitXor[2*#, DivisorSigma[1, #] + 1] &, 100] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    A378988(n) = bitxor(n+n,1+sigma(n));

Formula

For all n in A028983, a(n) = 2n+1 XOR sigma(n) = 1+A318467(n).

A378998 Number of trailing 1-bits in the binary representation of sigma(n).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000203, A007814, A088580, A028982 (positions of terms > 0), A028983 (of 0's), A072461 (of 1's), A072462 (of terms > 1), A337195, A378999 [= a(n^2)].

Programs

  • Mathematica
    IntegerExponent[DivisorSigma[1, Range[100]] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
  • PARI
    A378998(n) = valuation(sigma(n)+1,2);

Formula

a(n) = A007814(A088580(n)). [the 2-adic valuation of 1+sigma(n)]
For all n in A028982, a(n) = A337195(n).

A267895 Numbers whose number of odd divisors is prime.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 56, 58, 59, 61, 62, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 109
Offset: 1

Views

Author

Omar E. Pol, Apr 04 2016

Keywords

Comments

All odd primes are in the sequence.

Examples

			The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. The odd divisors of 36 are 1, 3, 9. There are 3 odd divisors of 36 and 3 is prime, so 36 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], PrimeQ[DivisorSigma[0, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Dec 03 2020 *)
  • PARI
    isok(n) = isprime(sumdiv(n, d, (d%2))); \\ Michel Marcus, Apr 04 2016

A335437 Numbers k with a partition into two distinct parts (s,t) such that k | s*t.

Original entry on oeis.org

9, 16, 18, 25, 27, 32, 36, 45, 48, 49, 50, 54, 63, 64, 72, 75, 80, 81, 90, 96, 98, 99, 100, 108, 112, 117, 121, 125, 126, 128, 135, 144, 147, 150, 153, 160, 162, 169, 171, 175, 176, 180, 189, 192, 196, 198, 200, 207, 208, 216, 224, 225, 234, 240, 242, 243, 245, 250, 252, 256
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 10 2020

Keywords

Comments

All values of this sequence are nonsquarefree (A013929).
From Peter Munn, Nov 23 2020: (Start)
Numbers whose square part is greater than 4. [Proof follows from s and t having to be multiples of A019554(k), the smallest number whose square is divisible by k.]
Compare with A116451, numbers whose odd part is greater than 3. The self-inverse function A225546(.) maps the members of either one of these sets 1:1 onto the other set.
Compare with A028983, numbers whose squarefree part is greater than 2.
(End)
The asymptotic density of this sequence is 1 - 15/(2*Pi^2). - Amiram Eldar, Mar 08 2021
From Bernard Schott, Jan 09 2022: (Start)
Numbers of the form u*m^2, for u >= 1 and m >= 3 (union of first 2 comments).
A geometric application: in trapezoid ABCD, with AB // CD, the diagonals intersect at E. If the area of triangle ABE is u and the area of triangle CDE is v, with u>v, then the area of trapezoid ABCD is w = u + v + 2*sqrt(u*v); in this case, u, v, w are integer solutions iff (u,v,w) = (k*s^2,k*t^2,k*(s+t)^2), with s>t and k positives; hence, w is a term of this sequence (see IMTS link). (End)

Examples

			16 is in the sequence since it has a partition into two distinct parts (12,4), such that 16 | 12*4 = 48.
		

References

  • S. Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of International Mathematical Talent Search, round 7, page 285.

Crossrefs

Complement of A133466 within A013929.
A038838, A046101, A062312\{1}, A195085 are subsequences.
Related to A116451 via A225546.

Programs

  • Mathematica
    Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, n, {}], {n, 300}] // Flatten
    f[p_, e_] := p^(2*Floor[e/2]); sqpart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[256], sqpart[#] > 4 &] (* Amiram Eldar, Mar 08 2021 *)

A357462 Numbers whose sum of deficient divisors is equal to their sum of nondeficient divisors.

Original entry on oeis.org

6, 28, 30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 308, 318, 330, 354, 364, 366, 390, 402, 426, 438, 462, 474, 476, 496, 498, 510, 532, 534, 546, 570, 582, 606, 618, 642, 644, 654, 678, 690, 714, 726, 750, 762, 786, 798, 812, 822, 834
Offset: 1

Views

Author

Amiram Eldar, Sep 29 2022

Keywords

Comments

Numbers k such that A187793(k) = A187794(k) + A187795(k).
All the terms are nondeficient numbers (A023196).
All the perfect numbers (A000396) are terms.
This sequence is infinite: if k = 2^(p-1)*(2^p-1) is an even perfect number and q > 2^p-1 is a prime, then k*q is a term.
Since the total sum of divisors of any term is even, none of the terms are squares or twice squares.
Are there odd terms in this sequence? There are none below 10^10.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 1, 6, 63, 605, 6164, 61291, 614045, 6139193, 61382607, 613861703, ... . Apparently, the asymptotic density of this sequence exists and equals 0.06138... .

Examples

			6 is a term since the sum of its deficient divisors, 1 + 2 + 3 is equal to 6, its only nondeficient divisor.
30 is a term since the sum of its deficient divisors, 1 + 2 + 3 + 5 + 10 + 15 = 36 is equal to the sum of its nondeficient divisors, 6 + 30 = 36.
		

Crossrefs

Subsequence of A023196 and A028983.
A000396 is a subsequence.

Programs

  • Mathematica
    q[n_] := DivisorSum[n, If[DivisorSigma[-1, #] < 2, #, -#] &] == 0; Select[Range[1000], q]
  • PARI
    is(n) = sumdiv(n, d, if(sigma(d,-1) < 2, d, -d)) == 0;

A378541 Practical numbers whose sum of divisors is even.

Original entry on oeis.org

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 78, 80, 84, 88, 90, 96, 104, 108, 112, 120, 126, 132, 140, 150, 156, 160, 168, 176, 180, 192, 198, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 294, 300, 304, 306, 308, 312, 320, 330, 336, 340, 342, 348, 352, 360, 364, 368, 378, 380
Offset: 1

Views

Author

Keywords

Comments

Practical numbers without any squares or twice squares.

Examples

			20 is in the sequence as it is practical (every number from 1 through sigma(20) = 42 can be written as the sum of some distinct divisors of 20) and sigma(20) = 42 is even.
21 is not in the sequence as it is not practical.
		

Crossrefs

Intersection of A005153 and A028983.
Setwise difference A083207 \ A353061.
Cf. A378540 (characteristic function).

Programs

A267894 Numbers whose number of odd divisors is nonprime.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 21, 27, 30, 32, 33, 35, 39, 42, 45, 51, 54, 55, 57, 60, 63, 64, 65, 66, 69, 70, 75, 77, 78, 84, 85, 87, 90, 91, 93, 95, 99, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 123, 125, 126, 128, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 147, 150
Offset: 1

Views

Author

Omar E. Pol, Apr 04 2016

Keywords

Examples

			The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. The odd divisors of 42 are 1, 3, 7, 21. There are 4 odd divisors of 42 and 4 is a nonprime number, so 42 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[150], !PrimeQ[DivisorSigma[0, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Dec 03 2020 *)
  • PARI
    isok(n) = ! isprime(sumdiv(n, d, (d%2))); \\ Michel Marcus, Apr 04 2016

A274685 Odd numbers n such that sigma(n) is divisible by 5.

Original entry on oeis.org

19, 27, 29, 57, 59, 79, 87, 89, 95, 109, 133, 135, 139, 145, 149, 171, 177, 179, 189, 199, 203, 209, 229, 237, 239, 247, 261, 267, 269, 285, 295, 297, 319, 323, 327, 343, 349, 351, 359, 377, 379, 389, 395, 399, 409, 413, 417, 419, 435, 437, 439, 445, 447, 449, 459, 475, 479, 493, 499
Offset: 1

Views

Author

M. F. Hasler, Jul 02 2016

Keywords

Comments

The subsequence of odd terms in A274397.
If n is in the sequence and gcd(n,m)=1 for some odd m, then n*m is also in the sequence. One might call "primitive" those terms which are not of this form, i.e., not a "coprime" multiple of an earlier term. The list of these primitive terms is (19, 27, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 343, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, ...). The primitive terms are the primes and powers of primes within the sequence. If a prime power p^k (k >= 1) is in the sequence, then p^(m(k+1)-1) is in the sequence for any m >= 1, since 1+p+...+p^(m(k+1)-1) = (1+p+...+p^k)(1+p^(k+1)+...+p^((m-1)*(k+1))). For example, with the prime p=19 we also have all odd powers 19^3, 19^5, ..., and with 27 = 3^3, we also have 27^5, 27^9, ... in the sequence.
On the other hand, for any prime p <> 5 there is an exponent k in {1, 3, 4} such that p^k is in this sequence (and therewith all higher powers of the form given above).
One may notice that there are many pairs of the form (30k-3, 30k-1), e.g., 27,29; 57,59; 87,89; 177,179; 237,239; 295,299; ... Indeed, it is likely that 30k-1 is prime and in this case, if 10k-1 is also prime, then sigma(30k-3) = 40k is divisible by 5 and sigma(30k-1) = 30k is also divisible by 5.

Examples

			Some values of a(2^k): a(2) = 27, a(4) = 57, a(8) = 89, a(16) = 171, a(32) = 297, a(64) = 545, a(128) = 1029, a(256) = 1937, a(512) = 3625, a(1024) = 6939, a(2048) = 13257, a(4096) = 25483, a(8192) = 49319, a(16384) = 95695, a(32768) = 185991, a(65536) = 362725, a(131072) = 708887, a(262144) = 1388367, a(524288) = 2722639, a(1048576) = 5346681, a(2097152) = 10514679, a(4194304) = 20698531, a(8388608) = 40790203.
		

Crossrefs

Cf. A000203 (sigma), A028983 (sigma even), A087943 (sigma = 3k), A248150 (sigma = 4k); A028982 (sigma is odd), A248151 (sigma is not divisible by 4); A272930(sigma(sigma(k)) = nk).

Programs

  • Mathematica
    Select[Range[1, 500, 2], Divisible[DivisorSigma[1, #], 5] &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is_A274685(n)=sigma(n)%5==0&&bittest(n,0)
    
  • PARI
    forstep(n=1,999,2,sigma(n)%5||print1(n","))

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Jul 16 2016
Previous Showing 41-50 of 57 results. Next