cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A048335 a(n) in base 11 is a repdigit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 133, 266, 399, 532, 665, 798, 931, 1064, 1197, 1330, 1464, 2928, 4392, 5856, 7320, 8784, 10248, 11712, 13176, 14640, 16105, 32210, 48315, 64420, 80525, 96630, 112735, 128840
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 11], {n, 0, 50}, {d, 10}]]] (* Vincenzo Librandi, Feb 06 2014 *)
  • Python
    A048335_list = [0] + [int(d*l,11) for l in range(1,10) for d in '123456789a'] # Chai Wah Wu, May 30 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 12*a(n-10) - 11*a(n-20) for n > 19.
G.f.: x*(10*x^9 + 9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(11*x^20 - 12*x^10 + 1). (End)
a(n) = (n - 10*floor((n-1)/10))*(11^floor((n+9)/10) - 1)/10. - Ilya Gutkovskiy, May 30 2016

A048336 a(n) in base 12 is a repdigit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 157, 314, 471, 628, 785, 942, 1099, 1256, 1413, 1570, 1727, 1885, 3770, 5655, 7540, 9425, 11310, 13195, 15080, 16965, 18850, 20735, 22621, 45242, 67863, 90484, 113105
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Sort[Flatten[Table[FromDigits[Table[n,{i}],12],{n,11},{i,99}]]]] (* Harvey P. Dale, May 01 2013 *)
  • Python
    A048336_list = [0] + [int(d*l,12) for l in range(1,10) for d in '123456789ab'] # Chai Wah Wu, May 30 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 13*a(n-11) - 12*a(n-22) for n > 21.
G.f.: x*(11*x^10 + 10*x^9 + 9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(12*x^22 - 13*x^11 + 1). (End)
a(n) = (n - 11*floor((n-1)/11))*(12^floor((n+10)/11) - 1)/11. - Ilya Gutkovskiy, May 30 2016

A048337 a(n) in base 13 is a repdigit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 183, 366, 549, 732, 915, 1098, 1281, 1464, 1647, 1830, 2013, 2196, 2380, 4760, 7140, 9520, 11900, 14280, 16660, 19040, 21420, 23800, 26180, 28560, 30941, 61882
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Comments

Integers n such that A043540(n)=1. - Michel Marcus, Aug 19 2015

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 13], {n, 0, 50}, {d, 12}]]] (* Vincenzo Librandi, Feb 06 2014 *)
  • PARI
    isok(n) = !n || (#vecsort(digits(n,13),,8) == 1) \\ Michel Marcus, Aug 19 2015
    
  • Python
    A048337_list = [0] + [int(d*l,13) for l in range(1,10) for d in '123456789abc'] # Chai Wah Wu, May 30 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 14*a(n-12) - 13*a(n-24) for n > 23.
G.f.: x*(12*x^11 + 11*x^10 + 10*x^9 + 9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(13*x^24 - 14*x^12 + 1). (End)
a(n) = (n - 12*floor((n-1)/12))*(13^floor((n+11)/12) - 1)/12. - Ilya Gutkovskiy, May 30 2016

A048338 a(n) in base 14 is a repdigit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 211, 422, 633, 844, 1055, 1266, 1477, 1688, 1899, 2110, 2321, 2532, 2743, 2955, 5910, 8865, 11820, 14775, 17730, 20685, 23640, 26595, 29550, 32505, 35460
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 14], {n, 0, 50}, {d, 13}]]] (* Vincenzo Librandi, Feb 06 2014 *)
  • Python
    A048338_list = [0] + [int(d*l,14) for l in range(1,10) for d in '123456789abcd'] # Chai Wah Wu, May 30 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 15*a(n-13) - 14*a(n-26) for n > 25.
G.f.: x*(13*x^12 + 12*x^11 + 11*x^10 + 10*x^9 + 9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(14*x^26 - 15*x^13 + 1). (End)
a(n) = (n - 13*floor((n-1)/13))*(14^floor((n+12)/13) - 1)/13. - Ilya Gutkovskiy, May 30 2016

A048339 a(n) in base 15 is a repdigit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 241, 482, 723, 964, 1205, 1446, 1687, 1928, 2169, 2410, 2651, 2892, 3133, 3374, 3616, 7232, 10848, 14464, 18080, 21696, 25312, 28928, 32544
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 15], {n, 0, 5}, {d, 14}]]] (* Harvey P. Dale, Feb 05 2014 *)
  • Python
    A048339_list = [0] + [int(d*l,15) for l in range(1,10) for d in '123456789abcde'] # Chai Wah Wu, May 30 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 16*a(n-14) - 15*a(n-28) for n > 27.
G.f.: x*(14*x^13 + 13*x^12 + 12*x^11 + 11*x^10 + 10*x^9 + 9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(15*x^28 - 16*x^14 + 1). (End)
a(n) = (n - 14*floor((n-1)/14))*(15^floor((n+13)/14) - 1)/14. - Ilya Gutkovskiy, May 30 2016

A096843 Primes of form repdigit - 1. Primes whose sum of divisors is a decimal repdigit.

Original entry on oeis.org

2, 3, 5, 7, 43, 443, 887, 2221, 8887, 444443, 888887, 444444443, 888888887, 444444444443, 888888888887, 222222222222222221, 444444444444444444444444444443, 44444444444444444444444444444443
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Union numbers 2, 5 and sequences A093171, A093163 and A091189.
Corresponding values of sigma(a(n)) are in A028987. - Jaroslav Krizek, Mar 19 2013

Examples

			n=43: sigma(43)=44;
		

Crossrefs

Extensions

Missing a(1)=2 and a(3)=5 added by Jaroslav Krizek, Mar 19 2013
Previous Showing 11-16 of 16 results.