cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A029628 Numbers to left of central numbers of the (3,2)-Pascal triangle A029618.

Original entry on oeis.org

3, 3, 3, 8, 3, 11, 3, 14, 26, 3, 17, 40, 3, 20, 57, 90, 3, 23, 77, 147, 3, 26, 100, 224, 322, 3, 29, 126, 324, 546, 3, 32, 155, 450, 870, 1176, 3, 35, 187, 605, 1320, 2046, 3, 38, 222, 792, 1925, 3366, 4356, 3, 41, 260, 1014, 2717, 5291, 7722, 3, 44, 301, 1274
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029629 Numbers to left of central elements of the (3,2)-Pascal triangle A029618 that are different from 3.

Original entry on oeis.org

8, 11, 14, 26, 17, 40, 20, 57, 90, 23, 77, 147, 26, 100, 224, 322, 29, 126, 324, 546, 32, 155, 450, 870, 1176, 35, 187, 605, 1320, 2046, 38, 222, 792, 1925, 3366, 4356, 41, 260, 1014, 2717, 5291, 7722, 44, 301, 1274, 3731, 8008, 13013, 16302, 47, 345, 1575
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029630 Odd numbers to left of central elements of the (3,2)-Pascal triangle A029618.

Original entry on oeis.org

3, 3, 3, 3, 11, 3, 3, 17, 3, 57, 3, 23, 77, 147, 3, 3, 29, 3, 155, 3, 35, 187, 605, 3, 1925, 3, 41, 2717, 5291, 3, 301, 3731, 13013, 3, 47, 345, 1575, 5005, 11739, 21021, 29315, 3, 3, 53, 3, 495, 3, 59, 551, 3249, 3, 16815, 3, 65, 20615, 73017, 3, 737, 25025, 276507
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029632 Numbers to right of central elements of the (3,2)-Pascal triangle A029618.

Original entry on oeis.org

2, 2, 7, 2, 9, 2, 24, 11, 2, 35, 13, 2, 85, 48, 15, 2, 133, 63, 17, 2, 308, 196, 80, 19, 2, 504, 276, 99, 21, 2, 1134, 780, 375, 120, 23, 2, 1914, 1155, 495, 143, 25, 2, 4224, 3069, 1650, 638, 168, 27, 2, 7293, 4719, 2288, 806, 195, 29, 2, 15873, 12012, 7007
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029633 Numbers to right of central elements of the (3,2)-Pascal triangle A029618 that are different from 2.

Original entry on oeis.org

7, 9, 24, 11, 35, 13, 85, 48, 15, 133, 63, 17, 308, 196, 80, 19, 504, 276, 99, 21, 1134, 780, 375, 120, 23, 1914, 1155, 495, 143, 25, 4224, 3069, 1650, 638, 168, 27, 7293, 4719, 2288, 806, 195, 29, 15873, 12012, 7007, 3094, 1001, 224, 31, 27885, 19019
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029634 Odd numbers to right of central elements of the (3,2)-Pascal triangle A029618.

Original entry on oeis.org

7, 9, 11, 35, 13, 85, 15, 133, 63, 17, 19, 99, 21, 375, 23, 1155, 495, 143, 25, 3069, 27, 7293, 4719, 195, 29, 15873, 7007, 1001, 31, 27885, 19019, 10101, 4095, 1225, 255, 33, 35, 323, 37, 2091, 39, 10659, 2451, 399, 41, 45543, 43, 169575, 58653, 483, 45
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1

Views

Author

Boris Putievskiy, Aug 15 2013

Keywords

Comments

The third row is (n^4 - n^2 + 24*n + 24)/12.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

Examples

			The start of the sequence as a triangular array read by rows:
   0;
   1,  2;
   4,  3,  4;
   9,  7,  7,  8;
  16, 16, 14, 15, 16;
  25, 32, 30, 29, 31, 32;
  36, 57, 62, 59, 60, 63, 64;
		

Crossrefs

Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).
Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n^2;
        elif k=n then return 2^n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n^2
        elif k=n then 2^k
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
    Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
  • PARI
    T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Python
    def funcL(n):
       q = n**2
       return q
    def funcR(n):
       q = 2**n
       return q
    for n in range (1,9871):
       t=int((math.sqrt(8*n-7) - 1)/ 2)
       i=n-t*(t+1)/2-1
       j=(t*t+3*t+4)/2-n-1
       sum1=0
       sum2=0
       for m1 in range (1,i+1):
          sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
       for m2 in range (1,j+1):
          sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
       sum=sum1+sum2
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n^2
        elif (k==n): return 2^n
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k > 0. [corrected by G. C. Greubel, Nov 12 2019]
Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.
For this sequence L(m)=m^2 and R(m)=2^m.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).
As a triangular array read by rows, T(n,k) = Sum_{i=1..n-k} i^2*C(n-1-i, n-k-i) + Sum_{i=1..k} 2^i*C(n-1-i, k-i); n,k >=0. - Greg Dresden, Aug 06 2022

Extensions

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

A029600 Numbers in the (2,3)-Pascal triangle (by row).

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 2, 7, 8, 3, 2, 9, 15, 11, 3, 2, 11, 24, 26, 14, 3, 2, 13, 35, 50, 40, 17, 3, 2, 15, 48, 85, 90, 57, 20, 3, 2, 17, 63, 133, 175, 147, 77, 23, 3, 2, 19, 80, 196, 308, 322, 224, 100, 26, 3, 2, 21, 99, 276, 504, 630, 546, 324, 126, 29, 3, 2, 23, 120, 375, 780, 1134, 1176, 870, 450, 155, 32, 3
Offset: 0

Views

Author

Keywords

Comments

Reverse of A029618. - Philippe Deléham, Nov 21 2006
Triangle T(n,k), read by rows, given by (2,-1,0,0,0,0,0,0,0,...) DELTA (3,-2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011
Row n: expansion of (2+3x)*(1+x)^(n-1), n>0. - Philippe Deléham, Oct 10 2011.
For n > 0: T(n,k) = A029635(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 16 2012
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
For n>0, row sums = 5*2^(n-1). Generally, for all (a,b)-Pascal triangles, row sums are (a+b)*2^(n-1), n>0. - Bob Selcoe, Mar 28 2015

Examples

			First few rows are:
  1;
  2, 3;
  2, 5,  3;
  2, 7,  8,  3;
  2, 9, 15, 11, 3;
...
		

Crossrefs

Cf. A007318 (Pascal's triangle), A029618, A084938, A228196, A228576.

Programs

  • GAP
    T:= function(n,k)
        if n=0 and k=0 then return 1;
        elif k=0 then return 2;
        elif k=n then return 3;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Haskell
    a029600 n k = a029600_tabl !! n !! k
    a029600_row n = a029600_tabl !! n
    a029600_tabl = [1] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2,3]
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k=0 then 2
        elif k=n then 3
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 2, If[k==n, 3, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    T(n,k) = if(n==0 && k==0, 1, if(k==0, 2, if(k==n, 3, T(n-1, k-1) + T(n-1, k) ))); \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k==0): return 2
        elif (k==n): return 3
        else: return T(n-1,k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(n,0)=2, T(n,n)=3; n, k > 0. - Boris Putievskiy, Sep 04 2013
G.f.: (-1-2*x*y-x)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015

Extensions

More terms from James Sellers

A132200 Numbers in (4,4)-Pascal triangle .

Original entry on oeis.org

1, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, 504, 336, 144, 36, 4, 4, 40, 180, 480, 840, 1008, 840, 480, 180, 40, 4
Offset: 0

Views

Author

Philippe Deléham, Nov 19 2007

Keywords

Comments

This triangle belongs to the family of (x,y)-Pascal triangles ; other triangles arise by choosing different values for (x,y): (1,1) -> A007318 ; (1,0) -> A071919 ; (3,2) -> A029618 ; (2,2) -> A134058 ; (-1,1) -> A112467 ; (0,1) -> A097805 ; (5,5) -> A135089 ; etc..

Examples

			Triangle begins:
  1;
  4,  4;
  4,  8,  4;
  4, 12, 12,  4;
  4, 16, 24, 16,  4;
  4, 20, 40, 40, 20, 4;
		

Crossrefs

Programs

  • Magma
    [1] cat [4*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
    
  • Mathematica
    Table[4*Binomial[n,k] -3*Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
  • Sage
    def A132200(n,k): return 4*binomial(n,k) - 3*bool(n==0)
    flatten([[A132200(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021

Formula

T(n,k) = 4*binomial(n,k), n>0 ; T(0,0)=1.
Sum_{k=0..n} T(n,k) = 2^(n+2) - 3*[n=0]. - G. C. Greubel, May 03 2021

A124459 Square array resulting from the bisection of array A124458. (The other array is A093560.)

Original entry on oeis.org

2, 3, 2, 3, 5, 2, 3, 8, 7, 2, 3, 11, 15, 9, 2, 3, 14, 26, 24, 11, 2, 3, 17, 40, 50, 35, 13, 2, 3, 20, 57, 90, 85, 48, 15, 2, 3, 23, 77, 147, 175, 133, 63, 17, 2, 3, 26, 100, 224, 322, 308, 196, 80, 19, 2, 3, 29, 126, 324, 546, 630, 504, 276, 99, 21, 2, 3, 32, 155, 450, 870, 1176
Offset: 1

Views

Author

Alford Arnold, Nov 09 2006

Keywords

Comments

Apparently the same as A029618 if the first term is ignored. - R. J. Mathar, Jun 18 2008

Examples

			Given the square array
1 2 3 3 3 3 3 3 3 3
1 2 4 5 7 8 10 11 13
1 2 5 7 12 15 22 26
1 2 6 9 18 24 40
1 2 7 11 25 35
1 2 8 13 33 (Table A124458)
1 2 9 15
1 2 10
1 2
1
Omit these odd columns:
1 3 3 3 3 3 3 3 3 3 3
1 4 7 10 13 16 19 22 25 28
1 5 12 22 35 51 70 92 117
1 6 18 40 75 126 196 288
1 7 25 65 140 266 462
1 8 33 98 238 504
1 9 42 140 378
1 10 52 192 (Table A093560)
1 11 63
1 12
1
which yields the square array A124459
		

Crossrefs

Cf. A084215 (antidiagonal sums).

Programs

  • Maple
    Reppasc := proc(n,k) binomial(n+floor(k/2),n) ; end: A124458 := proc(n,k) add(Reppasc(n,i), i=max(0,k-3)..k-1) ; end: A124459 := proc(n,k) A124458(n,2*k) ; end: for d from 1 to 19 do for k from d to 1 by -1 do n := d-k ; printf("%d,",A124459(n,k)) ; od: od: # R. J. Mathar, Jun 18 2008

Extensions

More terms from R. J. Mathar, Jun 18 2008
Previous Showing 11-20 of 23 results. Next